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Supervisor:
Prof. Dr. Dominik Zumbühl

Co-Supervisor:
Dr. Liuqi Yu

July 1, 2016





Contents

1. Introduction 1

2. Theory 4
2.1. GaAs Quantum Well . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2. Spin-Orbit Interaction . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3. The Spin Qubit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4. Electron Dipole Spin Resonance . . . . . . . . . . . . . . . . . . . . 9

3. Materials and Methods 11
3.1. Wafer & Gate Design . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2. Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4. The Quantum Dot 14
4.1. Transport Measurements . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2. Quantum Dot Characterization . . . . . . . . . . . . . . . . . . . . 19
4.3. Charge State Measurements of the Quantum Dot . . . . . . . . . . 20

5. Conclusion 27

6. Outlook 28

7. Acknowledgements 29

Appendices 30

A. Gate Configurations 31

3



1. Introduction

Conventional computation, as it is being done up to this day, use transistors as

their basic unit of computation. A transistor can electrically be set to either

0 or 1 forming a bit. Many bits together are operated using gates to perform

computational operations. Improving the computation power of transistor based

computers is mainly based on downscaling transistors and thereby increasing the

amount of transistors on a microprocessor. Improving conventional computers is

thus limited by the advances made in the fabrication of transistors.

The time to perform a task with a conventional computer decreases linearly with

the number of transistors (considering brute force method). In contrast, there are

numerous problems with exponentially increasing complexity (e.g. factorization of

large numbers). Solving these high complexity problems would require nearly infi-

nite time even with continuously improving algorithms. The basic computational

unit of the conventional computer is, and will always be, the bit.

As the size of a transistor is permanently decreased quantum phenomena dras-

tically change properties of semiconductor structures in the nanometer regime.

Quantum mechanics has to be taken into account to fabricate devices on the

nanometer scale. Besides controlling these phenomena to fabricate better transis-

tors for conventional computation, quantum mechanics by itself could be used to

redefine the bit and do quantum computation. The basic unit of quantum compu-

tation is the qubit. The qubit is a fermionic two level system with basis states 0

and 1. The qubit, as it is defined by quantum mechanical states, is not necessarily

in one or the other basis state but in a superposition of both of them. The most

general basis state of a qubit is

|Ψ〉 = α |0〉+ β |1〉 . (1.1)

where α2 and β2 are the probabilities of the system to be in the corresponding

state and α2 + β2 = 1. The actual state is thus statistically distributed over the

two basis states. A system containing multiple qubits can thus be in a large num-
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ber of states with a given probability distribution. This offers more computational

possibilities and would even allow to tackle the high complexity problems unable

to be solved by conventional computers. Peter Wilson Shore was one of the first

highlighting the potential of quantum computation by suggesting quantum algo-

rithms to factorize numbers more efficiently [1]. The downside of using qubits, as

they are defined by quantum mechanical states is, that they are very susceptible to

noise. Noise can lead to errors in codes and corrupt the qubits. As for conventional

computers errors can corrupt qubits and must be corrected to compute reliably.

For a basic read on quantum error correction the reader is recommended to have a

look at the dissertation of Daniel Gottesman [2]. Many theoretical proposals have

suggested different kind of implementations of qubits, such as Rydberg atoms [3],

diamond N-V centers [4], superconducting circuits [5] and electron spins [6]. The

following electron spin based systems including carbon nanotubes [7], semicon-

ducting nanowires [8] and gate-defined dots on semiconductor heterostructures [9]

have been intensely studied. In lateral quantum dots the qubit is the spin 1
2

state of a spatially localized electron in a magnetic field. Heterostructures of

a various semiconductors such as Gallium-Arsenide/Aluminium-Gallium-Arsenide

(GaAs/AlGaAS) or Silicon/Silicon-Germanium (Si-SiGe) have been investigated.

A major issue to allow quantum computation is the relaxation time T1. The qubit

couples to multiple energetic systems in its environment. Spin-orbit coupling,

where an electrons magnetic moment couples to magnetic field induced by the

electrons movement within an electric field, is one mechanism randomizing spins

resulting in more rapid relaxation of the qubit.

In GaAs heterostructures two sources of internal electrical fields, namely the

Dresselhaus field induced by bulk inversion asymmetry (BIA) and the Rashba field

induced by structure inversion asymmetry (SIA) are observed. It has been shown

that the spin-orbit field in GaAs heterostructures can be controlled by applying

electrical fields. It has been theoretically predicted that it is possible to tune spin-

orbit coupling into a regime, where an effect called persistent spin-helix leads to

coherence times going towards infinity [10]. Knap et al. has shown that this system

tunable into a regime electrons are more robust to spin independent scattering and

prolonged coherence lengths lead to weak anti-localization effects [11].

The Quantum Coherence Lab of Prof. Dr. D. Zumbühl follows the predic-

tions of Khaetskl et al. and Aleiner et al. and has developed a design which

should allow to locally control spin-orbit interaction in quantum dots [12], [13].

The goal is furthermore to spatially displace single electrons within the intrinsic
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spin-orbit fields at high frequency to perform Electron dipole spin resonance. In

this thesis a GaAs/AlGaAS wafer specifically fabricated (Awschalom group, Uni-

versity of Santa Barbara, California) for the control of spin-orbit coupling and

anti-localization measurements is investigated for the possibility of creating single

electron quantum dots. Back- and top-gates (BG and TGs) are used to form quan-

tum dots within a two dimensional electron gas(2DEG) formed in a GaAs/AlGaAs

quantum well. A newer design using TGs to locally control spin-orbit interaction

is being fabricated but no functioning devices have been found so far. The goal of

this thesis was to show the potential of the wafer to efficiently form and charac-

terize quantum dots. Characterization of the quantum dots showed, that we are

capable of forming and measuring a quantum dot, but that the wafer has a very

low mobility and there is a lot of disorder in the 2DEG. The device studied in this

thesis therefore does not allow to perform spin-orbit interaction measurements on

single electron spins. Even though this thesis does not show the most promising

results for future measurements, it is very likely that higher mobility/less disorder

and allow the formation of single electron quantum dots. In ongoing work the

focus lays on devices which show a higher electron mobility in the 2DEG and the

new TG-design is introduced.
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2. Theory

In this section the properties of GaAs and specially GaAs quantum wells are

introduced. It further will be shown, how we suggest to use intrinsic electric fields

present in GaAs quantum wells to perform electron dipole spin resonance.

2.1. GaAs Quantum Well

GaAs is a III-IV compound semiconductor which forms a zinc-blende crystal. The

band gap between valence and conduction band is 1.44 eV . By growing GaAs with

a fraction of Gallium replaced with Aluminum (ALxGa1−xAs) the band gap can be

tuned within a range from 1.44 eV to 2 eV (for Al concentrations up to 30%). The

exchange of lattice atoms has little influence on the crystal lattice introducing only

a deviation of roughly 0.5%. An interface between GaAs and AlGaAs therefore has

only little strain due to this small difference in lattice constants. The conduction

Figure 2.1.: a) Valence and conduction bands of AlGaAs (A) and GaAs (B) in contact
with each other. The percentage of Al replacing Ga defines the increase in the band gap b)
Energy bands in the same heterostructure as shown in a) with a doping introduced excess
of charge carriers. Electrons migrate from A to B until the electrochemical is aligned. Band
bending towards the heterostructure due to migrated electrons. [14]

band of a GaAs/AlGaAs quantum well is shown in figure 2.1. The band-gap
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mismatch leads to the formation of the well in the sandwiched GaAs layer. A δ-

doping layer is grown in the AlGaAs phase introducing Si donor atoms and thereby

additional charge carriers (n-doping). At room temperature the electrons have the

energy to enter the quantum well. Reducing thermal energy towards T = 0K

disallows electron to leave the quantum well. Electrostatic attraction draws the

electrons towards the positively charge Si cores and the conduction band bends at

the heterostructure as electrons accumulate and the electric field builds up. This

is visualized by the slope introduced in the quantum well as the derivative of the

band is the electric field E. The amount of dopant introduced in the δ-doping layer

is set to fill the quantum well with electrons and raise the Fermi level such that

only the lowest sub-band is occupied. The electrons in this sub-band are restricted

in two dimensions. This system is called two dimensional electron gas.

The density of states (DOS) for a two dimensional system is given by

D2D =
m∗

2π~2
, (2.1)

with the reduced electron mass m∗ = 0.67 me for GaAs.

The density of states is constant and independent of the charge carrier density

n = k2f/ (2π) and the Fermi wave vector kf . The charge carriers (the electrons)

involved in transport behave in two dimensions like quasi-free particles with energy

Ef =
~2k2f
2m∗

. (2.2)

Only electrons with exactly the Fermi wave vector contribute to the transport in

the 2DEG. Electrons with lower momentum cancel out each other’s contribution

to transport.
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2.2. Spin-Orbit Interaction

The coupling of an electron’s magnetic moment to its orbital motion is well known

from electrons orbiting atomic nuclei. The coupling of the spin to its motion in an

electric field is a relativistic effect. Electrons moving at high velocities −→v within

an electric field
−→
E are experiencing a magnetic field

−→
B SO. The magnetic field is

perpendicular to the direction of the electron movement and the electric field. The

effective magnetic field is

−→
B SO = − v

c2
×
−→
E . (2.3)

Electrons within GaAs/AlGaAS heterostructures typically move at the Fermi ve-

locity of 195′000 m
s

and are therefore influenced by relativistic effects. In Al-

GaAS/GaAS heterostructures there are two main sources known to be responsible

for intrinsic electric fields, namely BIA and SIA. In bulk Si the crystal lattice is

perfectly symmetric. GaAs in comparison forms a zinc-blende lattice where two

superimposed FCC lattices, each consisting of either Gallium or Arsenide, form

the unit cell. The asymmetric distribution of the different atoms leads to a per-

manent electric field. The Hamiltonian for the coupling of an electrons spin to the

electric field originating from BIA is:

HD
SO = γ

[
σxkxk

2
z − σxkxk2y + σykyk

2
x − σykyk2z + σzkzk

2
x − σzkzk2y

]
(2.4)

In a 2DEG the electrons are highly confined along the z-axis, therefore the

wave vector operator is replaceable by its expectation value kz = 〈kz〉 = 0 and

k2z = 〈k2z〉 6= 0. Splitting the Hamiltonian into linear and cubic term leads to:

HD1
SO = β1 (σxkx − σyky) (2.5)

HD3
SO = γ

(
σykyk

2
x − σxkxk2y

)
(2.6)

which, using the relativistic approach from eq.2.3, leads to internal magnetic fields

BD1
SO =

2β1
gµB

(
kx

−ky

)
(2.7)
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BD3
SO =

2β3
gµB

(
−kxk2y
kyk

2
x

)
(2.8)

SIA fields do not occur in the the bulk semiconductor but originate from struc-

tural asymmetry. The asymmetry responsible for the so-called Rashba field is the

asymmetry in the quantum well introduced by the δ-doping layer. In the exper-

iments where spin-orbit fields are to be controlled Rashba spin-orbit coupling is

desired and the well is designed asymmetrically on purpose. Rashba type elec-

tric fields therefore occur along the growth direction of the crystal (z-axis). The

Hamiltonian for Rashba-type electric fields is

HR
SO = α (σxky − σykx) . (2.9)

The Rashba Hamiltonian can be used to determine the magnetic field which is

BR
SO =

2α

gµB

(
ky

−kx

)
. (2.10)
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Figure 2.2.: Axis in all images: the x-axis is the kx wave vector and the y-axis is the ky
wave vector. Spin-orbit fields are shown as blue arrow. The longer an arrow, the bigger is
the spin-orbit field. a) linear Dresselhaus field b) cubic Dresselhaus field c) linear Rashba
term d) Spin-orbit field in the regime where α = β. The field is unidirectional for any k.

As both sources for spin-orbit coupling have been determined the spin-orbit

coupling Hamiltonian, excluding the cubic Dresselhaus terms because they are

dominated by the linear terms, is

HSO = α (σxky − σykx) + β (σxkx − σyky) . (2.11)

As the Rashba field originates from manufactured structures in the crystal and

points along the growth direction, the growth direction itself can be chosen to

be 001 and thus leads to the Rashba and Dresselhaus fields pointing in the same

direction. The Rashba field derives from the electric field between δ-doping layer
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and the 2DEG and is therefore tunable by applying an external electric field. It is

possible to tune it into a regime where the Dresselhaus and the Rashba coefficients

are similar. These intrinsic fields are to be used to perform EDSR on spin-qubits

discussed in depth in the following section.

2.3. The Spin Qubit

An electron has a magnetic moment called spin. Without a magnetic field the spin

orientation is randomized and the electron is equally likely to be in the state |↑〉
or |↓〉 and the states are energetically degenerate. The application of a magnetic

field
−→
B provides a polarization axis and lifts the degeneracy of the spin states.

This effect is called the Zeeman effect and the energy by which the degeneracy is

lifted is given by the Zeeman-energy

EZeeman = gµBB = ~ωL, (2.12)

where g is the Land-factor, µB is the Bohr-magneton, B is the magnetic field

strength and ωL is the Larmor frequency. As the spin orients itself along the

magnetic field axis, inertia leads to Larmor precession around the polarization

axis at the Larmor frequency ωL. This system is called the spin qubit.

2.4. Electron Dipole Spin Resonance

Manipulation of the qubit state is necessary to perform computational operation.

To manipulate the spin qubit the magnetic moment is to be addressed. To manip-

ulate the spin of an electron a magnetic field oscillating at the Larmor frequency

is needed. The resonant driving of the transition and the energy inserted into

the system can’t be translated into higher Larmor frequency, as it is fixed by the

Zeeman-energy. Instead it is translated in the change of angular momentum and

the qubit state rotates on the surface of the Bloch sphere as shown in figure 2.3.

The frequency at which the rotation on the Bloch sphere occurs is given by the

Rabi frequency

Ω = gµBB⊥/~, (2.13)
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where B⊥ is the amplitude of an oscillating magnetic Bx,y = B⊥(cos(ωt)+sin(ωt))

field perpendicular to an external magnetic field B acting as polarization axis and

defining the Zeeman-energy. As the rotation depends on the amplitude of the

oscillating field and time, the duration of the resonant drive defines the rotation

pulse.

Figure 2.3.: Bloch sphere representation of electron spin in magnetic field. The blue
line shows the spin precession around the polarization axis. Resonant drive at the Larmor
frequency leads to a spin-flip rotation.

It is difficult to apply oscillating magnetic fields at high frequencies and exter-

nally applied magnetic fields are therefore no valid options to drive the spin-flip

transition. We have shown in chapter ”Spin-Orbit Interaction” how electric fields,

for fast electrons, translate into magnetic fields. And the coupling of such an

electric field to the spin of an electron is called electron dipole spin resonance.

Exemplary magnetic field induced by spin-orbit interaction within GaAs quan-

tum wells are shown in figure 2.2. We want to do EDSR by spatially displacing

electrons within the intrinsic spin-orbit fields at the Larmor frequency. To do so

we need a wafer allowing control of spin-orbit interaction and a means to isolate

single electrons and spatially displace them at high frequencies.
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3. Materials and Methods

The theory needed to perform EDSR on electrons has brought up some basic

requirements which need to be fulfilled. In this section the means to characterize

a quantum dot formed in a wafer grown to allow control of spin-orbit interaction

are introduced.

3.1. Wafer & Gate Design

The growth profile of the GaAs Wafer investigated in this thesis is shown in fig-

ure 3.1a. The wafer was grown by Shawn Mack and David Awschalom in Santa

Barbara. The wafer is grown on an n+ doped GaAs substrate which acts as the

BG. The quantum well is positioned 1210 nm above the BG and 75 nm below

the surface and is formed within a 9.3 nm GaAs layer between layers of AlGaAs.

The Silicon δ-doping layer for asymmetric doping is positioned 12 nm above the

quantum well. The 600 nm GaAs layer grown at low temperature (GaAs LT) has a

high resistivity and prevents leaks between BG and quantum well [15]. The major

flat corresponds to the 100 and the minor flat to the 010 crystalline directions.

The 001 crystalline direction is set along the growth axis leading to the Rashba

and Dresselhaus electric field pointing along the growth direction. The wafer was

fabricated to at T = 0 and no electric fields applied have Rashba field strength

equal to the Dresselhaus field strength α ≈ β(doping amount, distance to the

quantum well, size of the quantum well). The 2DEG has an electron density of

n = 4.61011cm−2 which leads to electrons having a Fermi wavelength λF ≈ 37 nm.

The mobility of the wafer is µ = 69′000cm2/V s, which is low for 2DEGs.

Figure 3.1b shows the top view of the wafer and the position which was cleaved

and used for the device fabrication. The values for electron density and mobility

given before are maximum values for the whole wafer. The effective values are

most likely be lower.

Ohmic contacts to the 2DEG are fabricated using UV-photolithography and An-

nealing procedures. Au/Ge Top-gates are fabricated using e-beam-photolithography
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a) b)

Figure 3.1.: a) Growth profile of the GaAs wafer. The 2DEG is positioned 75 nm below
the surface. It is a double heterostructure with GaAs sandwiched between AlGaAs layers.
A 600 nm GaAs layer grown at low temperature acts as a leakage protection between the
2DEG and the BG at the very bottom of the wafer. b) Top view on Wafer. The black
square shows the part of the wafer which was cleaved and used for the device fabrication.

and thermal evaporation. The TG configuration is shown in figure 3.2. The gates

have a width of ∼ 50nm. The design is taken from S. Amasha and modified to

reduce the distances between gates [16]. The main quantum dot gates Nose, Left

Wall (LW), Left Plunger (LP), Middle Plunger (MP), Right Plunger (RP) and

Right Wall (RW) are used to for a main quantum dot. The gates Left Splitter

(LS) and Right Splitter (RS) are used to divide the 2DEG underneath into main

dot transport and sensing regions which is necessary to bias main dot/sensor in-

dividually. The gates Top Sensor (TS1/2), Middle Sensor (MS1/2) and Lower

Sensor (LS1/2) are used to for sensors to measure the main dot.

3.2. Experimental Setup

To measure electronic transport through a 2DEG and form a quantum dot a low

temperature setup and an electronic setup is required. The sample is mounted

on a sample stage in a dilution refrigerator (MCK50). The temperature in the

mixing chamber of the dilution refrigerator reaches ∼ 30 mK. It is known from

similar samples, that the electron temperature in the sample for the shown mixing

chamber temperature is ∼ 100 mK. A set of two Low Noise High Sensitivity
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1 μm 
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TS2

MS2

LS2

TS1

MS1

LS1

LW LP MP RP RW
Figure 3.2.: Top-Gate design used in this thesis. Main dot gates: Nose, LW, RW, LP,
MP, RP. Splitters: LS and RS. Sensor gates: TS1/2, MS1/2 and LS1/2

(LNHS) Digital Aanalog Converters (DAC) is used to apply voltages. The two

DACs are used to apply negative voltages to Back- and Top-gates and apply voltage

biases to the 2DEG. Sensitivity of the applied bias is increased by putting a 1 : 111

voltage divider in series with the 2DEG. A10MΩ resistor is put in series to have

stable currents through the 2DEG. The current through the 2DEG is drained and

multiplied by an IV-converter and digitalized using Digitial MultiMeters (DMMs).
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4. The Quantum Dot

Having shown how electrons are restricted in two dimensions within a GaAs/AlGaAs

quantum well, the x-y plane can be further restricted to form an actual quasi zero-

dimensional quantum dot.

Figure 4.1.: Electron density simulation using SETE [17]. Electric fields deplete the
2DEG underneath (blue). Island of low electron density in the middle of the gates is the
quantum dot (green). Black arrows are the tunnel couplings to the reservoirs. Image taken
from [18].

Negative voltages are applied to top-gates to form a quantum dot. The electric

field reduce the electron density n within the 2DEG. A simulation of the electron

density in the 2DEG for a different gate arrangement is shown in figure 4.1. The

color in the images represents decreasing electron density from brown (high) to

green to blue (zero) as a function of gate voltages. The image shows three isolated

and semi isolated regions of high electron density. As voltages on the gates are

more negative, channels through the 2DEG are forming. The gate voltages can

be set to form a quantum dot which is still connected to the rest of the 2DEG

(reservoirs). The reservoirs are set to fixed potentials. On the left side of the

simulation a circular region of high electron density, which is still connected to the

reservoirs is shown (open quantum dot). In the middle position a fully isolated

island of heightened electron density appears (closed quantum dot).
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The potential containing electrons in the quantum dot is complex and difficult

to describe mathematically. The potential can be approximated to be harmonic if

we assume the shape of the quantum dot to be symmetric in x and y. The energy

levels of the quantum harmonic oscillator are

En = ~ω
(
n+

1

2

)
(4.1)

The energy level spacing is given by

∆ = ~ω (4.2)

Figure 4.2.: Harmonic potential and the wave functions whit quantized energy levels.
[19].

The harmonic potential and its quantized orbital energy levels are shown in

figure 4.2. For non-interacting electrons orbitals are filled until all orbitals of lower

energy then the chemical potential of the 2DEG are filled. Starting from the
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ground energy level each level holds 2, 6, 10, 14 electrons and so on. Electrons do

repel each other and therefore it takes energy to overcome the repulsion and add

another electron. This energy is called charging energy EC . The charging energy

depends on the number of electrons in the potential and the orbital it is filling, as

orbitals have different spatial probability distributions. The energy needed to add

an electron to the quantum dot is thereby given by

Eadd = EC + ∆, (4.3)

where ∆ is only nonzero when an electron enters an orbital on the next higher

energy level. The energy level setting in the quantum dot depends on the width of

the harmonic potential with E ∝ 1
L2 . As voltages on gates forming the quantum

dot get more negative, the width of the quantum well decreases and the levels of

the quantum shift upwards. This effect is called plunging and can be used to tune

the quantum dot energy levels. The same absolute change in gate voltage on two

different gates normally induces different shifts of the quantum dot energy levels.

The corresponding relationship is given by the following equation

VDot = α · VGate, (4.4)

where VDot is the change in energy in the dot (in eV), α is the lever-arm for the

gate of interest and VGate is the difference in voltage applied to the gate.

Figure 4.3 shows the chemical potential (grey) in relation to the quantum dot

energy levels. In figure 4.3,a the quantum dot is filled with one electron. It

takes only the charging energy to add the second electron. Electrons tunnel at

frequencies ΓS and ΓS between quantum dot and reservoir as the level of the

second electron aligns with the chemical potentials of the reservoirs. Between two

quantum dot levels tunnelling is not allowed due to Coulomb repulsion and the

dot is in Coulomb blockade. Lowering the dot energy levels and dis-aligning it by

more positive gate voltages results in the quantum dot containing two electrons.

With the addition of the second electron the orbital is full. Addition of the third

electron opens a new orbital and does therefore take the orbital energy plus the

charging energy.

Applying a DC-bias over the quantum dot opens up a bias window between the

source and the drain chemical potential. Electrons will tunnel from the source
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Figure 4.3.: The energy diagrams show the reservoir energy level with the Fermi level
broadened by kbT . The tunnelling frequency through the tunnel barriers is marked with
Γ. a) Dot energy levels of singly occupied ground level. The dots orbital energy level for
the second electron is marked with E0 ≡ ∆. The addition energy for the second electron
is marked with U2 ≡ EC . b) Gate voltages lower the second dot level which aligns with
the Fermi level and allows electrons to tunnel on and off the dot. c) Further decrease in
gate voltage forbids the electron occupying the dot which leads to a dot filled with two
electrons [16]

reservoir to the quantum dot and then to the drain reservoir whenever a quantum

dot level is within the bias window. The current through the quantum dot is given

by

I = eΓ, (4.5)

where Γ is the lower tunnelling frequency amongst ΓS and ΓD and e is the electron

charge.

4.1. Transport Measurements

The global charge carrier density within the 2DEG is manipulated by applying a

negative voltage to the BG. The reduced charge carrier density in the 2DEG allows

the voltage on the TG to be less negative to fully deplete the 2DEG. Without the

negative BG voltage the TGs leak before fully depleting the 2DEG. It is not yet

understood why the BG voltage is needed to prevent the leak. Applying voltages

to any set of two TGs allows to form a quantum point contact (QPC) in between

and to fully pinch-off the conductance through the channel. An exemplary pinch
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curve is shown in figure 4.4. Voltages are applied to the Nose and RW closing the

width of the conducting channel through the 2DEG. The conductance trace shows

three different slopes. The first, steepest slope ranges from 0 mV to −250 mV .

In this range the electric field of the gates depletes the 2DEG underneath. In the

second region, from −350 mV to −1000 mV , the channel in the 2DEG narrows

with more negative gate voltages and a quantum point contact is formed. In this

wafer we know the electron density in the 2DEG and therefore calculate the Fermi

wavelength λF =
√

2πn ≈ 37 nm. This value for the Fermi wavelength this the

lower limit calculated for no applied BG voltage. In the experiments presented

here λF > 37 nm. Normally conductance plateaus for channel widths that are

multiples of λF should be detected. Above −1000 mV and closer to the pinch,

peaks of conductance similar to the Coulomb peaks found in quantum dots occur.

The conductance is 0 when the size of the channel becomes smaller then λF . The

wafer is known to have a low mobility and therefore a lot of disorder. We expect

the Coulomb peak like features to derive from disorder potential coming from the

doping layer or lattice defects. Disorder potentials may form barriers similar to

the ones we form with the gate applied voltages. It is even possible that the

disorder potential narrows the channel we form to begin with. As the channel

width is reduced to less than λF = 37 nm there is no conductance through the

channel. The channel can be closed by either the potentials applied by the gates

or a combination of gate potentials and disorder potentials.
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Figure 4.4.: Pinch-off curve of gates nose against RW. From 0− (−250) mV the 2DEG
underneath the gates is depleted. From 250 − (−1200)mV the channel is continuously
narrowed until it is fully pinched. Irregularities in pinch-off behavior are especially apparent
right before pinch-off.
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The pinch-off voltages between the main dot gates are shown in figure 4.5.

Pinch-off values between Nose-RW (−1200 mV ) and Nose-LW(−1260 mV ) have

minor differences. The RW is thus shorter than the LW. Comparison of the LS-LW

(1000 mV ) and the RS-RW(−1940 mV ) pinch-off leads to the conclusion that the

LS is shorter than the RS. The difference in pinch-off voltage is v 5% and barely

influence the characterization measurements.

-1260mV

-1000mV -940mV

-120
0mV

not pinching

Figure 4.5.: Topgate arrangement on surface of the device. Drawn in black are the
pinch-off Voltages between all main dot gates. Only minor differences in pinch-off voltages
suggest a rather symmetrically fabricated device.

4.2. Quantum Dot Characterization

Gates Nose, RW, LW, LP, MP and RP are used to deplete the 2DEG and form a

quantum dot. Figure 4.6 a shows the conductance through the dot in dependence

of the left and right wall voltage; all other main dot gates are at fixed voltages.

Gate voltage ranges are −600 mV −−1500 mV . The image shows the conductance

through the dot as a function of the gate voltages. For low gate voltages on RW

and LW (−600 mV ) areas of high conductance with hardly detectable lines on

top of it are detected. The conductance channel width has not reached λF and

conductance through the dot does not only depend on quantum dot level aligning

but also on classical conductance through the channels formed. Figure 4.6 b shows

a cut along RW through the data shown in a. The graph shows Coulomb peaks

corresponding to the entering of a quantum dot energy level into the bias window.
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For less negative RW voltage (−600 mV ) the conductance does not go to zero

and the quantum dot is open. As voltages get more negative the conductance

through the dot in between peaks goes to zero and the quantum dot is in Coulomb

blockade. Each line visible in the 2D plot therefore corresponds to a transition of

the quantum dot from being occupied with N electrons to N-1 or N+1 respectively.

The Coulomb peaks are separated by a voltage of v 15 mV applied to the RW

and v 20 mV applied to the LW. If the lever-arm is known Coulomb peak spacing

in gate voltages can be translated into the actual addition energy using formula

4.4. In this thesis the no lever-arms were measured. The measurement nonetheless

allows to make a relative statement about the lever-arms of gates RW and LW.

The voltage difference between two Coulomb peaks is smaller for the RW than

for the LW and the lever-arm of the RW is therefore larger. The quantum dot is

therefore located closer to the RW .

In addition to the quantum dot features presented, some irregular features are

found. The data shows an abrupt loss of conductance at v −1100 mV RW voltage

and v −1200 mV LW voltage followed by small regions whit conductance. We

account this behavior as the one detected in the pinch of curve to quantum dots

formed with the disorder potential. More precisely to a quantum formed very

close to the channels pinched by the Nose and the LW/RW. If the disorder dot

is in Coulomb blockade the conductance will be zero even if a main quantum dot

energy level is in the bias window. The gate voltage area within which the disorder

dot features appear corresponds well with the Coulomb peak features found in the

pinch-off curves which supports that argument. The wafer disorder disturbs the

measurement strongly and does not bring up conclusive data state of the quantum

dot.

4.3. Charge State Measurements of the Quantum

Dot

Measuring transport through a quantum dot has its limitations, as the coupling

to the reservoir decreases with more negative gate voltages, the height and the

width of the potential barrier increases. The tunnelling frequency into the dot

gets lower and the current isn’t measurable anymore. The loss of signal in trans-

port measurements can be bypassed by accessing the quantum dots charge state.

Changing voltage on gates forming the main quantum dot fills or empties the
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Figure 4.6.: a) Two dimensional plot of conductivity through a quantum dot. Transport
through the quantum dot is measured as the left wall (LW) is run against the right wall
(RW) of the main dot. The green line is a cut along the y-axis and is shown in b). Gate
configuration shown in A.1. b) Conductivity as a function of right wall voltage. Coulomb
peaks with a level spacing of v 20 mV are shown.

quantum dot electron by electron. Each electron added/taken from the quantum

dot raises/lowers the charge state of the quantum dot by one electron charge. The

charge state of the quantum dot is accessed by placing a quantum object, such

as a QPC or another quantum dot in close proximity to the main quantum dot.

The change in charge state leads to a stronger electric field emitted, plunging the

sensor and therefore changing the conductance through the sensor.
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We do not need to measure the conductance over the main quantum dot, as we

are interested in it’s the charge state. Bias across the main quantum dot is set to

zero because tunnelling events happen as quantum dot levels align with the chem-

ical potential. The 2DEG underneath gate RS is depleted to isolate the left sensor

side and individually bias the sensor. The main quantum dot gates are at fixed

voltages, where the LW is set to the smallest value (−800 mV ) required to form

a closed dot and maximize coupling to the sensor. The sensor side is biased and

negative voltage is applied to the gate TS1. The conductance as a function of the

voltage on gate TS1 is shown in figure 4.7. The measurement shows Coulomb peaks

where conductance in between is non-zero suggesting that, similar to the measure-

ment for the formation of a QPC, an open quantum dot is formed somewhere

between the gates LW, LS, TS1 and random disorder. The dips in conductance at

−1010 mV and −900 mV are first signs of switching noise/telegraph noise being

introduced by going more negative on all gates. Switching noise is going to be

discussed in more detail later in this chapter. Many Sensor gate arrangements on

both sides of the main quantum dot have been studied.

The change in conductance is maximized when the sensor gate voltage is set

to a value where the slope of the conductance measurement is at its maximum.

The sensor gate was therefore set to be on the flank of the peak with steepest

slope (v −1000 mV ). Every gate used to form the main quantum dot act also as

a plunger on the sensor quantum dot. All gates with changing voltage during a

measurement are going to be linearly corrected. This allowed to get charge sensing

signal over a large range of gate voltages.

Figure 4.8 a shows transport through the sensor as a function of the voltages

on the Nose and RW. Maximum conductance values are around 25 e2/h which

corresponds to the conductance peak chosen as sensor. Main quantum dot electron

transitions can are observed as parallel lines. A cut along the nose (green line) is

shown in figure 4.8 b. The graph shows the conductance as a function of the Nose

voltage. The plot shows jumps in conduction of v 3.5∗10−3 e2/h corresponding to

a change of v 4%. The coupling between the main quantum dot and the sensor dot

is relatively small. On other devices measured in Zumbühl group charge sensing

signals > 50%. We do not understand why the coupling is this weak in the sample

as the gate configuration is specifically chosen to maximize the coupling. The

corrections applied to the sensor gate can be seen to not perfectly correct the drift

of the sensing position but allows to detect the main quantum dot charge state over

a range of 400 mV . The derivative with respect to the nose is taken and shown
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Figure 4.7.: Formation of a mixture between a QPC and a sensor dot using gate
SU1. No proper coulomb peaks and no proper conductance plateaus are found. Gate
configuration shown in A.2.

in figure 4.9 a. The differentiated graph reveals multiple electron transitions not

visible in the not differentiated graph. There are two dots which do couple strongly

to the sensor the slopes of which are highlighted in green and blue in figure 4.9

b. Besides their strong coupling to the sensor there are anti-crossings to be found

where the electron transitions intersect each other. At such an anti-crossing the

sum of electrons in both dots stays the same, but an electron tunnels from one

quantum dot to the other. Electron transition are found for the whole measured

gate range for the main quantum dot (blue). The second quantum dot (green) has

no transitions after the highlighted one and the last electron was therefore pushed

out of the quantum dot. The lever-arm of both gates on the second quantum dot is

much smaller than the lever-arm of the gates on the main quantum dot. The Main

quantum dot is therefore likely to be close to the left wall. The second quantum

dot is most likely due to disorder formed in a more central position between all

main quantum dot gates.

In addition to the two strong coupling quantum dots multiple electron transitions

with different slopes are found. Multiple additional disorder dots must therefore be

introduced in greater distance to the charge sensor (light blue). These quantum

dots are most likely the ones disturbing the transport measurement and in the

region between the gates Nose and LW/RW. Due to the difference in coupling to

the sensor and the assumed larger distance, tunnelling interaction between the

main quantum dot and the addition dots is not observable. It is very likely that

the strong coupling quantum dots have tunnelling coupling to the left reservoir
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Figure 4.8.: a) Transport through sensor while gates NOSE and RW are run against
each other. Parallel lines which correspond to a change in the charge state of the main
quantum dot are visible. Green line is a cut along the NOSE and is shown in b). Gate
configuration shown in A.3. b) Cut along the green line shown in a. Sharp conductance
(v 4%) jumps corresponding to a change of the main quantum dot charge state.

and the weak coupling ones to the right reservoir.

Further charge sensing measurements and sensor optimizations are performed

to search for the last electron transition. Figure 4.10 shows the differential of

the conductance in respect to the Nose as a function of Nose and RW voltage.

In this measurement the plunger gates LP, MP, RP are set at more negative

voltages and the range on RW is going more negative as well. The measurement

shows only electron transitions which suggests that the disorder dots are empty.

Electron transitions are found and have a spacing of v 50 mV on the Nose. The

range on the measurement, an additional 75 mV after the last found transition

does not allow to to make statement about the electron number in the dot. A
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a)

b)

Figure 4.9.: a) Conductance plot derivative with respect to the Nose gate and as a
function of Nose and Right Wall voltage. b) Colored lines do differentiate between main
quantum dot (blue), second quantum dot (green) and additional weak coupling quantum
dots.

conductance measurement with more negative gate voltage on LP, MP and RP

(−2100 mV ) is shown in figure 4.11. The measurement is disturbed by short-

lived switching/telegraph noise. The origin of the the switching noise is unclear,

but it is supposed to be coming from electrons in the spacer layer between the

quantum well and the δ-doping layer. Such electrons momentarily are released of

their position and the proximity to the 2DEG and the coupling to the sensor leads

to strong changes in conductance. Setting the plunger gates to (−2100 mV ) will
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Figure 4.10.: Derivative of conductance in respect to the Nose as a function of Nose and
Right Wall voltages. Main quantum electron transitions are observable. Gate configuration
shown in A.4.

lead to gate leaks. I think it might be, that the vacancies induced by the highly

negative gate voltages and the switcher noise might be reducing the resistance

from top-gates to the 2DEG and make it easier for gate leaks to happen.
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Figure 4.11.: Conductance through sensor dot as a function of Nose and Right Wall
voltage. Switching noise disturbs the measurement. Gate configuration shown in A.5.
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5. Conclusion

In this thesis I have investigated a device made of wafer which is specially fabricated

for the control of spin-orbit interaction. The wafer properties, especially the low

mobility, suggest that measurement are going to be complicated.

Starting with the transport measurements the influence of the low mobility

could not be ignored. The formation of a QPC in the 2DEG shows the formation

of quantum dot features which we think are deriving from the disorder in the

wafer. Transport trough the quantum dot solidified the assumption that disorder

potential facilitates the formation of undesired quantum dots. In the charge sensing

measurement it becomes clear that we form at least six quantum dots instead of

one. It has been suggested by S. Wächter in his Master thesis that the influence of

the disorder, for a similar wafer (grown by S. Mack, D. Awschalom) increases with

more negative BG voltage applied. In addition to the generally low mobility in the

wafer the device was taken from edge of the wafer. It has also been shown by S.

Wächter that the mobility on the edge of a similar wafer was significantly lower [20].

In addition to the disorder potential disturbing a measurement switching noise is

a big problem as TG voltages have been set to be more negative. The switching

noise has been studied by M Pioro-Ladriere et al. who has shown that applying

positive bias to gates helps in reducing switching noise in GaAs 2DEGs [21].

We were able to tune the quantum dot into a regime where we annihilate the

disorder formed dots and form a single quantum dot. We are successfully plunging

the quantum dot but could not fully empty the quantum dot because gate leaks

prevent further plunging. In respect to the whole project forming single electron

quantum dots is crucial. It is possible that fore different samples single electron

quantum dots can be formed on the wafer used in this thesis. The low mobility

is a basic property of the wafer deriving from the growth process. Choosing a

sample from a region on the wafer which is more centred might lead to slightly

better results, but the maximum mobility is µ = 69′000cm2/V s. In order to make

sure that a wafer allowing control of spin-orbit interaction can be used to form

quantum dots, a cleaner wafer is required.
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6. Outlook

In ongoing experiments devices with TG designs as shown in figure 6.1 are fab-

ricated. Two additional TGs positioned above the main quantum dot are intro-

duced. The new TGs together with the BG is supposed to allow to keep the

electron density in the quantum dot constant while tuning the strength of the

Rashba type spin-orbit interaction. Measuring spin relaxation times then allows

to to find the regime where α = β, as predicted by I.L. Aleiner et al. and A.V.

Khaetskiii. [12] [13]. Locally displacing the electron by applying high-frequency

pulses to TGs should then allow to perform EDSR.

200 nm

Figure 6.1.: New gate design with added large area top gates above the main quantum
dot position.
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A. Gate Configurations
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Figure A.1.
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Figure A.2.
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Figure A.3.
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Figure A.4.

32



1 μm

Nose

-2100 mV

RW-800 mV

BG: -1400 mV
Bias: 200 μV

-2000 mV

-1010 mV

-2000 mV

Figure A.5.
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