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Abstract

Spin qubits constitute one of the most promising platforms for large-scale quantum computation

due to their inherent potential to be scalable to a large number of qubits and their small size. In this

thesis, the successful experimental measurement of the g-factor anisotropy in a lateral GaAs single-

electron spin qubit device is presented. While applying an in-plane magnetic field of varying strength

and direction, the Zeeman splittings are extracted by measuring the tunneling rates into the individual

spin states of the empty quantum dot. The results are compared with a recent theoretical model, which

separates the corrections to the bulk g-factor of GaAs into isotropic and anisotropic contributions that

originate from different spin-orbit interaction terms. By varying the direction of the magnetic field, values

between |g| ≈ 0.365 and |g| ≈ 0.415 are obtained. From the measurements in this device, the determined

anisotropic correction δga ≈ 0.025 is in good agreement with the theory. The isotropic correction reduces

the average g-factor below the GaAs bulk value |g| = 0.44 to an average g-factor |ḡ| ≈ 0.396, corresponding

to an isotropic correction δgi ≈ 0.044 which is weaker than predicted by the theory. These results could

help determining the relevant parameters from k · p theory with an increased accuracy. Furthermore, the

observation that the spin splitting changes with the direction of the magnetic field is of high significance

for the addressability and operation of a spin qubit. Thus, the findings presented in this thesis will allow

for the further optimization of spin qubits in the future.

The results of the work presented in this thesis have been published as a part of Ref. [1].
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1 INTRODUCTION

1 Introduction

As a major milestone of technological progress, the advances in solid-state physics that were made in the

20th century paved the way for the semiconductor industry, which revolutionized electronics in the 1960s

and thereby started the new era of the information age. Moore’s law [2], stating that the number of

transistors on an integrated circuit grows exponentially in time, was fulfilled from the start of chip mass

production in the 1970s until the early 2010s. Transistors have become an order of magnitude smaller,

with node sizes changing from a few µm in the 1970s to the current standard of a few nm - a size regime

where quantum effects become more important. As the downscaling of transistors becomes increasingly

difficult, a saturation in the growth of transistor counts has been observed in recent years.

In the 1980s, the concept of a quantum computer was outlined, representing a platform that could

efficiently simulate and solve quantum mechanical problems [3]. In a simplified picture, a classical com-

puter takes an input in the form of a string of binary bit values of 0 or 1 and performs predefined

mathematical operations using logical gates on it, which produces an output that again takes on the form

of a bit string. In analogy to a classical computer, the basic building block of a quantum computer is

the qubit, which represents a quantum two-level system that is in a superposition of basis states 0 and 1.

In the circuit model, a quantum computer converts a binary input to a qubit state and applies quantum

gates in order to generate any unitary transformation. After a projective measurement, the qubit state

collapses and a classical binary output is returned. There are several potential applications for quantum

computers. For example, several quantum algorithms have been proposed with which certain problems

could be solved faster and where the scaling with size would be more favourable than with a classical

computer. Furthermore, it is predicted that quantum computers could help solving complex problems in

quantum chemistry in order to discover, for example, new medicines.

To help selecting suitable physical systems that could be used as qubits, the five DiVincenzo criteria [4]

were postulated: i.) the qubits must be scalable, ii.) it must be possible to initialize the qubits in a known

state, iii.) the decoherence time of the qubits must be much longer than the gate operation times, iv.) a

universal set of quantum gates can be implemented and v.) it must be possible to measure the result of

a computation on specific qubits.

The system that is investigated in this thesis closely resembles the original proposal of the so-called

Loss-DiVincenzo qubit [5]. It is realized in a heterostructure consisting of the III-V compound semi-

conductors gallium arsenide (GaAs) and aluminum gallium arsenide (AlGaAs). At the GaAs-AlGaAs

interface, a two-dimensional electron gas (2DEG) can be formed, which confines the electrons in the

direction perpendicular to the interface and results in a finite electron density and high electron mobility

in the two-dimensional plane that is parallel to the interface. In order to reach the quasi zero-dimensional

confinement of a quantum dot, negative voltages are applied to gates which are located on the surface of

the device. The resulting electric field depletes the regions in the 2DEG which are situated underneath

these gates and, using certain gate geometries, a quantum dot can be formed which contains only a few

electrons. The electrons tunnel in and out of the quantum dot from reservoirs on its side, and hence such

a geometry is referred to as a lateral quantum dot.

Owing to their large charge carrier mobilities, a substantial part of the experimental groundwork

for the realization of spin qubits such as successful confinement [6], charge sensing [7], single-shot read-

out [8,9] and the realization of quantum gates [10,11] has been first carried out in GaAs 2DEG systems.

In this thesis, a GaAs/AlGaAs lateral single-electron quantum dot spin qubit device is investigated. Upon

applying an in-plane magnetic field, the quantized energy levels in the quantum dot split according to the

Zeeman splitting ∆EZ = g · µB · B, where g is the g-factor, µB ≈ 58 µeV/T the Bohr magneton and B
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1 INTRODUCTION

the applied magnetic field. For the discussed device type, a recent theoretical model by Stano et al. [12]

predicts deviations of the electron g-factor from that of the bulk material which originate from spin-orbit

interaction (SOI) effects. The strength of these corrections depend on the thickness lz of the quantum

dot wave function in the direction perpendicular to the 2DEG plane. Notably, one of the dominating cor-

rections to the g-factor stems from the Dresselhaus SOI, which originates from the inversion asymmetric

Zincblende crystal structure of GaAs and exhibits an anisotropy in the plane of the 2DEG. Due to this

effect, it is expected that a g-factor anisotropy of approximately 10%, depending on the direction of the

in-plane magnetic field, can be observed. Here, the anisotropic correction from the Dresselhaus SOI is on

the same order as isotropic correction terms that result from other SOI mechanisms, which results in a

strong g-factor anisotropy compared to some other materials. For example, measurements of the g-factor

anisotropy in silicon quantum dots have shown an anisotropy of only 2% [13], owing to the bulk-inversion

symmetric diamond crystal structure of the host material. Indeed, measurements on a first GaAs device

have shown a g-factor anisotropy that is in agreement with the theoretical predictions [1]. In this thesis,

the measurements on a second device of the same type, which was fabricated on a slightly different wafer,

are presented.

Several aspects that motivate this work are related to the spin-relaxation time T1 and the coherence

time T2. In connection with the third DiVincenzo criterion, both of these times have a high significance

for the successful operation of a qubit. In GaAs, a T1 reaching tens of seconds has been measured: On the

same device where the preliminary g-factor anisotropy was measured, Camenzind et al. [14] previously

determined a spin relaxation time T1 = 57 ± 15 s, setting the world record for an electron spin lifetime

in a nanostructure. Holding relevance for the g-factor anisotropy measurements, a dependence of the

spin relaxation time on the Zeeman splitting, T1 ∝ ∆EZ
−5 has been predicted in theory [15] and shown

experimentally [16]. With such a strong dependence, knowledge over the anisotropy of the g-factor can

in principle allow control over qubit parameters such as T1.

In contrast to the long spin relaxation times in GaAs quantum dots, the measured coherence times T2

were only on the order of tens of nanoseconds [10,11]. In GaAs, T2 is limited by the hyperfine interaction

that results from the effective magnetic field of surrounding nuclear spins in the host material with the

electron spin. Because the dynamics of the nuclear spin bath are comparably slow, these short coherence

times can be improved with decoupling procedures, which increase T2 to a value that is close to 1 ms [17].

In this time regime, the decoherence time may also be impaired by charge noise, which results from

random charge fluctuations in the wafer material. The charge noise causes the confinement potential to

fluctuate, thereby changing the position of the wave function. When g changes with the position of the

wave function, ∆EZ is also changed as a result. Since the electron spin resonance frequency fESR = ∆EZ
h

is a key ingredient for the addressability of the qubit [18], fluctuations in ∆EZ are connected to a loss in

coherence times [19, 20]. Further insight on spatial variations of the g-factor could help addressing this

issue. Finally, the g-factor is a very fundamental quantity, and an experiment such as the one discussed in

this thesis can help to better understand the underlying physics. From the experimental data presented

here, material-specific spin-orbit parameters could be extracted, thereby supporting further theoretical

investigations.

There have been a number of experiments that investigated the electron g-factor in GaAs quantum

dots. On a similar heterostructure as the one investigated in this thesis (with the 2DEG situated approx-

imately 100 nm below the surface), Potok et al. [21] measured |g| ≈ 0.37 for a single-electron quantum

dot through transport spectroscopy over a magnetic field range of 0 to 6 T, deviating from the GaAs bulk

g-factor of -0.44. Using a quantum point contact as a charge sensor for transport through the quantum
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1 INTRODUCTION

dot, Hanson et al. [22] measured a nonlinear deviation from the bulk g-factor at magnetic fields above

5 T, which was attributed to the magnetic field pushing the electron wave function into the neighbouring

AlGaAs region at high fields. Investigations of the Kondo effect in GaAs quantum dots also allowed to

extract the g-factor, yielding values of |g| ≈ 0.29 [23] and |g| ≈ 0.15 [24] for more shallow 2DEGs (situated

approximately 15 nm below the surface), and |g| ≈ 0.44 [25] for a 2DEG depth of approximately 100

nm. In a similar heterostructure, the angular dependence of the single-electron g-factor in the 2DEG

plane was investigated by Zumbühl et al. [26] in 2004, yielding values around |g| ≈ 0.4. However, the

uncertainty around ±15% of the g-factor was too large to observe the smaller g-factor anisotropy. In

a more recent experiment, Michal et al. [27] measured the g-factor in several arrays of GaAs quantum

dots for different magnetic field directions by means of electric dipole spin resonance (EDSR). In line

with their predictions, they obtained |g| ≈ 0.36 along the [1 1 0] crystal direction for a double dot, and

|g| ≈ 0.44 along the [1 1 0] direction for a triple dot and a quadruple dot.

This thesis is structured as follows: In chapter 2, the basic physics of a GaAs spin qubit device

and the theoretical predictions for the g-factor corrections in such a device are presented. In chapter

3, the measurement methods for this work are outlined. Finally, the experimental results are presented

in chapter 4, showing that it was indeed possible to successfully measure the g-factor anisotropy in the

course of this thesis.

6



2 THEORETICAL BACKGROUND

2 Theoretical background

In this chapter, the underlying physics of GaAs spin qubits is discussed. First, the heterostructure

system which was used to fabricate the device is described. Then, the concept and basic principles of

quantum dots are introduced. Following this, a brief description of the important types of spin-orbit

interaction is given. Spin-orbit interactions are a key component for the theoretical predictions of the

g-factor corrections, which are shown in the last section of this chapter.

2.1 The two-dimensional electron gas

The device that was investigated in this thesis is hosted on a GaAs/AlGaAs heterostructure. GaAs is a

III-V compound semiconductor that crystallizes in zincblende structure, which can be thought of as two

displaced face-centered cubic sublattices of Ga and As atoms. The zincblende structure has a tetrahedral

symmetry, and as such possesses no inversion center. This asymmetry of the bulk material gives rise to

spin-orbit effects which will be discussed later in this chapter. By partial substitution of the Ga atoms

with the group III Al atoms, the band gap energy can be tuned between the value of GaAs (Eg,GaAs=

1.44 eV) and the value of AlAs (Eg,AlAs = 2.16 eV). This alloy can be written as AlxGa1−xAs, where

x describes the Al concentration and can take a value between 0 and 1. For the heterostructure that is

described here, a frequently used Al concentration of x = 0.3 was used, and following mentions of AlGaAs

will refer to this concentration. GaAs and AlAs have a very small mismatch within 0.5% of their lattice

constant, thus allowing the formation of strain-free GaAs/AlGaAs interfaces.

An overview of the wafer profile is given in Fig. 1, showing the different layers that are grown on

the GaAs bulk crystal using molecular-beam epitaxy. At the interface between GaAs and AlGaAs, a

heterojunction is formed due to the difference in band gap energies. Due to an n-type silicon δ-doping

layer situated 40 nm above the heterojunction, a triangular quantum well forms at the GaAs/AlGaAs

interface. Here, the donated electrons are electrostatically drawn to the ionized dopant atoms yet unable

to surpass the interface at low enough temperatures, resulting in a linear electric field that gives the

triangular confinement. Inside the confinement potential, the energy states are quantized and form

sub-bands. For the wafers discussed in this thesis, a temperature below approximately 100 K causes the

electrons to only occupy the lowest sub-band. In this limit, the strong confinement will prevent movement

of the electrons in the direction that is perpendicular to the interface, which is here denoted as z. Due

to this strong confinement in one direction, such a system is referred to as a two-dimensional electron

gas (2DEG). This system shows a high electron mobility, which is a result of the strain-free nature of

the GaAs/AlGaAs interface and the remote doping that brings ionized donors out of the direct path of

the electrons. To increase the mobility even further, a GaAs/AlGaAs superlattice, totalling to 100 nm,

is placed between the GaAs bulk crystal and the 800 nm GaAs layer hosting the 2DEG. The superlattice

consists of periodically spaced 3 nm GaAs and 3 nm AlGaAs layers and leads to a further reduction

of the strain. On top of the heterostructure, a 10 nm GaAs capping layer is grown to avoid oxidation

of the Al atoms in the underlying AlGaAs. On this capping layer, Ti/Au surface gates are deposited.

By applying negative voltages to these gates, regions in the underneath 2DEG are depleted of electrons.

Using a suitable surface gate design in combination with the 2DEG properties, it is therefore possible to

achieve the confinement that is necessary for such a lateral quantum dot.

The 2DEG represents one of the best experimental realizations of a two-dimensional system and the

underlying physics has been well outlined in the literature (see e.g. Ref. [29]). In the plane of the 2DEG,

the dispersion relation resembles that of a free electron, but with a different effective mass m∗:
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2 THEORETICAL BACKGROUND

+

z z

V

+
+

ionized donors

subbands

(a) (b)

/Ti

Figure 1: (a) Schematic cross section of the GaAs/AlGaAs heterostructure used in the experiment. The
growth direction is denoted as z. 110 nm below the surface, a two-dimensional electron gas (2DEG) is
formed at the GaAs/AlGaAs interface. The Ti/Au gates which are fabricated on top of the heterostruc-
ture serve to locally deplete the 2DEG underneath them. Adapted from Ref. [28].(b) Qualitative sketch
of the potential V in the growth direction z. The Si dopants are ionized and remotely donate electrons
to the 2DEG, which leads to the triangular shape of the quantum well with subbands shown in red.

E =
~2k2

2m∗
, (1)

where ~ is the reduced Planck constant, k the wave vector and m∗ the effective mass. For the conduction

band in GaAs, m∗ = 0.067me, where me is the mass of the free electron. From the parabolic dispersion

relation, a density of states,

ρ2D(E) =
gsgvm

∗

2π~2
, (2)

can be calculated. For GaAs, gs = 2 describes the degree of spin degeneracy and gv = 1 the valley

degeneracy of the conduction band minima, thereby reducing the density of states to ρ2D(E) = m∗

π~2 .

Notably, the density of states for the 2DEG is independent of the energy.

2.2 Quantum dots

The accumulation of a few charge carriers in a quasi zero-dimensional confinement leads to interesting

physics as electron-electron interactions become more important and the coupling to the environment

becomes weaker [29]. Such objects are referred to as quantum dots. There are several different imple-

mentations of quantum dots, such as self-assembled quantum dots [30], vertical quantum dots [31], or

lateral quantum dots which are the focus of this thesis. After discussing the gate layout and operation

of a lateral quantum dot device, this section gives a qualitative introduction to the Coulomb blockade

effect, which is a fundamental part of quantum dot physics. Due to the high significance for this thesis,

8



2 THEORETICAL BACKGROUND

the utilization of an adjacent quantum dot as a charge sensor is also briefly discussed.

2.2.1 Lateral quantum dots

In GaAs quantum dot devices, a quantum dot can be formed by applying negative voltages to gates on the

device surface, thereby depleting the 2DEG that is formed at the heterostructure interface underneath.

A scanning electron microscope image depicting the gate layout of the device that was investigated in

this thesis is shown in Fig. 2a. The gates are labelled according to their functionality: Two wall gates

(LW, RW) flanking the dot from the sides, a nose gate (N) and three plunger gates (LP, CP and RP)

constitute the main confinement of the quantum dot. Furthermore, two separation gates (SEP) serve to

form pointy reservoirs that are separated from the rest of the 2DEG. Beyond each of the two wall gates,

a set of three further gates can be used to form a sensor quantum dot. This allows for a non-invasive

measurement of the states in the main quantum dot.

𝜇𝑆 𝜇𝐷

𝜇𝑁

𝜇𝑁+1

𝜇𝑆 𝜇𝐷

𝜇𝑁

𝜇𝑁+1 𝜇𝑆 𝜇𝐷

𝜇𝑁

𝜇𝑁+1

𝜇𝑁+2

(I) (II) (III)

(c)

(a)
S QD D

G

(b)

(I)

(II)

(III)

[110]

[110]

[001]

x̂

ŷ

ẑ

Figure 2: (a) Scanning electron micrograph of the device used for the experiments with an underlying
schematic of the 2DEG. Due to the gate design, a quantum dot can be energized in the center. Inset: The
quantum dot (QD) is tunnel coupled to the source (S) and drain (D) reservoirs and capacitively coupled
to the gates (G). Adapted from Ref. [28]. (b) Measured Coulomb blockade peaks. Points corresponding
to the configurations shown in (c) are marked (I)-(III). (c) Diagram representing transport through the
quantum dot in the case where no bias voltage is applied, i.e. µS = µD. At configuration (I), the chemical
potential µN for the quantum dot hosting N electrons lies below the reservoir chemical potentials while
µN+1 for the next electron lies above them, such that the occupation of the quantum dot remains fixed.
In this configuration, transport through the quantum dot is prevented and the system is in Coulomb
blockade. As the plunger gate voltage Vplunger is made less negative, the chemical potential in the
quantum dot is lowered until configuration (II) is reached. Here, the chemical potential µN+1 of the
(N+1)-electron state is in resonance with the reservoir potentials, thus allowing elastic tunneling in and
out of the quantum dot. As Vplunger is made even less negative, the system reenters Coulomb blockade
which is shown in configuration (III).

The described gate layout allows for the manipulation of the shape and size of the main quantum
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2 THEORETICAL BACKGROUND

dot. For example, all gate voltages can be uniformly made more negative, whereupon the quantum dot

becomes smaller. In principle, this design also allows to squeeze the quantum dot in one direction, for

example by making the plunger and nose gates more negative while compensating with less negative

wall gates. For the device investigated in this thesis, such shape manipulation was not possible over

significant ranges because the distances between gates led to a narrow parameter space of stable quantum

dot configurations. More specifically, the gates at the center quantum dot were closer together than in

the first device of Ref. [1, 32], such that they pinched off at less negative voltages.

2.2.2 Coulomb blockade effect

The energy level structure of a quantum dot is characterized by two energy scales: the charging energy

and the confinement energy. The charging energy describes the electrostatic repulsion between electrons

inside the quantum dot. Following the derivation in Ref. [29], it can be estimated as the capacitive

charging energy of a disc with radius r that carries the charge −|e|N (of N electrons in the dot) while

surrounded by a material with the dielectric constant ε, giving a capacitance C = 8εε0r and leading to

the charging energy

Ec =
e2

C
=

e2

8εε0r
, (3)

which is needed to add an additional electron to the quantum dot. From Eq. 3, it can be seen that

the charging energy increases as the size of the quantum dot becomes smaller. Such a treatment is valid

under the constant interaction model [16], which is based on two assumptions: First, the interactions of

electrons in the dot with other electrons in the dot and electrons in the environment of the dot can be

parametrized by a single capacitance Ctot, such that

Ctot = CS + CD + CG. (4)

This is a sum of capacitances between the quantum dot and the source reservoir CS , the drain reservoir

CD and the gates CG. As a second requirement for the model, it is assumed that the energy level spacing

due to the confinement is not affected by interactions of the electrons and thus independent of the electron

number.

The confinement energy for a few-electron quantum dot with a harmonic confinement potential of

radius r and effective mass m∗ can be estimated as a quantum harmonic oscillator with a frequency

w0 = ~
4r2m∗ [29], leading to the orbital spacing

∆ = ~w0 =
~2

4r2m∗
. (5)

Both the relative strength of the charging energy and the confinement energy depend on the size of

the quantum dot. For small, self-assembled quantum dots with a radius below the Bohr radius a∗B , the

confinement energy is larger than the charging energy. At sizes above a∗B , which is the relevant regime

for lateral quantum dots, the charging energy is larger than the confinement energy. The crossover point

between these two regimes is near a∗B , which is a∗B ≈ 10 nm for GaAs. In the case that an empty orbital is

filled, the charging energy and the orbital spacing together make up the addition energy Eadd = Ec + ∆,

which is the energy required for the addition of a further electron to the dot. Due to orbital filling rules,

sometimes only the charging energy needs to be paid in order to add an electron. Considering the Aufbau

principle and Hund’s rule for e.g. the case where each p-orbital in a p-shell is filled with one electron,

the addition of another electron with opposite spin into one of the p-orbitals will only cost the charging

10



2 THEORETICAL BACKGROUND

energy [31,33].

Several experimental requirements need to be fulfilled in order to observe the Coulomb blockade in

quantum dots. First, the tunneling resistance Rt from the quantum dot to the surrounding electron

reservoirs, denoted as source and drain, needs to be sufficiently high. This can be shown by starting from

the Heisenberg uncertainty relation ∆E∆t > h and considering the charging energy, i.e. ∆E = e2

C . For

the time difference, the expression of the RC-time constant ∆t = RtC can be considered. This leads to

the condition

Rt >
h

e2
, (6)

and determines the minimum threshold for the tunneling resistance in order to observe Coulomb blockade.

An additional implication of this uncertainty relation is that a weak tunnel coupling is better suited for the

characterization of the Coulomb energy. Regarding the setup of the experiment, the electron temperature

must be small compared to the relevant energy scales. This leads to the condition

kBT �
e2

C
, (7)

meaning that the charging energy must be much larger than the electron temperature. If the condition

kBT < ∆ (8)

is fulfilled, the orbital spacing is visible in the measurements. Altogether, requirements (6)-(8) are needed

in order to resolve the energy levels of a quantum dot. For the case of a quantum dot with r ≈ 15 nm,

inserting into eq. (3) and considering εGaAs = 13 gives Ec ≈ 12 meV (though, the charging energy will

be smaller than this value due to screening effects by the surface gates and adjacent electron reservoirs),

while for the estimate in eq. (5), a orbital spacing ∆ ≈ 1.3 meV is obtained with m∗GaAs = 0.067me.

Dividing these energies by the Boltzmann constant yields the conditions T � 139 K for (7) and T < 15

K for (8).

Qualitatively, the Coulomb blockade effect in a quantum dot can be explained with the schematic

given in the inset of Fig. 2a, in which the quantum dot is tunnel coupled to the source and drain electron

reservoirs and capacitively coupled to the surface gates. This treatment leads to the energy level diagram

that is shown in Fig. 2c. Here, µS and µD denote the electrochemical potentials of the source and

drain reservoirs. In the quantum dot, the electrochemical potential for the addition of the Nth electron is

denoted as µN . By changing the plunger gate voltage by ∆Vp, µN is shifted by the amount −|e|αp∆Vp.
In this expression, αp is the lever arm of the plunger gate, a quantity that converts the change in gate

voltage to a change in energy. From the above expression of the shift in µN , it is recognized that applying

a more negative (positive) voltage increases (decreases) the electrochemical potential inside the dot.

In the case (I) shown in Fig. 2c, the electrochemical potentials of the source and drain are aligned.

Starting with N electrons in the quantum dot, µN is situated below µS and µD while µN+1 is above these

levels. In this configuration, all available levels in the quantum dot are filled and no further transport

occurs (disregarding thermal broadening of the leads). At such a configuration, the system is in Coulomb

blockade. As the electrochemical potential in the dot is lowered using the plunger gate, there is a point

where µN+1 becomes resonant with µS and µD. In this configuration, electrons can, sequentially, tunnel

elastically in and out of the dot, and a large peak in conductance is measured. As µN+1 is tuned past

this resonance point, the system re-enters Coulomb blockade. This transport behaviour leads to the

characteristic, sharp conductance peaks at small bias.
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Figure 3: (a) Transport through the quantum dot in the case of a non-zero bias voltage VSD, which
changes the chemical potential in the source µS by −|e|VSD and opens a bias window (blue) between µS
and µD. Transport through the dot is possible when the chemical potential corresponding to a quantum
dot electronic state is within the bias window. (b) By scanning the bias voltage against the voltage on
a plunger gate, the characteristic Coulomb diamonds that result from the opening of the bias window
are obtained. The points (I)-(III) correspond to the three configurations in (a). (c) Measured Coulomb
diamond plot, showing the bias voltage VSD in dependence of the plunger gate voltage VPlunger. Some
excited states can be seen close to the edges of the diamonds.

When a non-zero bias voltage VSD is applied between the source and drain reservoirs, the electrochem-

ical potential of the source µS is changed by −|e|VSD and thereby opens the so-called bias window [16].

While at zero bias the transport could only occur in regions where µN was at resonance with the reser-

voir potentials, electron transport is now possible at any point where an energy level in the quantum

dot is within the bias window. This is schematically depicted in Fig. 3a, showing three exemplary cases

of transport within the transport window. When the bias voltage is scanned against the plunger gate,

an increasing bias continuously opens the bias window. As a consequence, the plunger gate voltage

region where Coulomb blockade occurs becomes increasingly narrow until it disappears. When such a

measurement is performed for sufficiently negative and positive bias voltages, characteristic diamond-

shaped regions of Coulomb blockade, called Coulomb diamonds, are obtained, as shown in Fig 3b and

3c. Such bias spectroscopy measurements can, for example, also serve as an useful instrument for the

characterization of excited states inside the dot.

2.2.3 Charge sensing

Transport measurements through a quantum dot are limited by several factors. When the tunneling

rates of the dot become too low, the current becomes too small to be directly measurable. Furthermore,

the dot needs to be coupled to both reservoirs in order to observe transport. To bypass these issues, an

additional quantum dot which is in close proximity of the investigated main quantum dot can be used
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as a charge sensor. In this approach, transport is measured through the sensor quantum dot instead of

the main quantum dot. In principle, this allows for the non-invasive measurement of charge states in

the main quantum dot, and also works if it is only coupled to one reservoir. With this measurement

technique, real-time sensing of the charge state in the main quantum dot can be achieved. A time

resolved charge sensing signal is shown in Fig. 4a for the single-electron regime, where the measured

sensor conductance takes on two values, corresponding to the filled (high sensor conductance) and empty

(low sensor conductance) state of the main quantum dot.

(a) (b)

(1)

(2)

(3)

(0)

δ

loaded

empty

Figure 4: (a) Measured real-time charge sensing signal. When the sensor quantum dot is tuned to the
falling edge of a Coulomb peak, the higher (lower) sensor conductance in this plot corresponds to a loaded
(empty) quantum dot. (b) Differentiated signal of the measured sensor conductance δgcc as a function
of two center quantum dot gate voltages VLW and VN , belonging to the wall gate LW and the nose gate
N in Fig. 2(a). At every configuration where tunneling processes occur, the sensor conductance rapidly
changes, leading to a large amplitude in the differentiated signal. Brackets denote the number of electrons
in the quantum dot. The experiments described in this thesis are carried out at the transition between
the charge states (0) and (1).

In order to achieve a high sensitivity in the charge sensor, the sensor quantum dot is tuned to one

of the flanks of a Coulomb peak. Due to the capacitive coupling to its electrostatic environment, the

conductance in the sensor quantum dot changes whenever an electron tunnels on or off the main dot. In

order to use this real-time technique, the time between tunneling events which is given by the tunneling

rate needs to be shorter than the total measurement time. Furthermore, the bandwidth of the sensor

needs to exceed the tunneling rate and the charge sensing signal needs to be larger than the noise.

As a consequence of the capacitive coupling, changes in gate voltages that are applied to the main

quantum dot will cause the sensor quantum dot to be driven away from the operation point at the Coulomb

peak flank, which negatively impacts the sensitivity of the charge sensor. To counteract this effect, a

compensating voltage is applied to the plunger gate of the sensor quantum dot, thus serving as a feedback

mechanism. Here, a linear compensation with a gate-specific correction coefficient is used. Though more

refined compensation schemes are possible, a linear compensation is sufficient for the experiments in this

thesis. Fig. 4b shows the charge sensing signal depending on the gates LW and N of the main quantum

dot. A linear compensation to the sensor is applied for both gates, although the correction factor varies

(i.e. it is larger for gates that are closer to the charge sensor). Such a plot is referred to as a charge

stability diagram, as it shows regions of gate voltages where a certain number of electrons occupy the

quantum dot. In the shown plot, the transition lines are close to diagonal at the same voltage difference,

meaning that the quantum dot has a similar capacitive coupling to both gates.
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2.3 Spin-orbit interaction

The spin-orbit interaction (SOI) is a relativistic effect that couples the orbital motion of a charge carrier

with its spin degree of freedom. An electron that moves in an electric field ~E experiences in its resting

frame a magnetic field
~B′ ∝ ~p× ~E, (9)

where ~p denotes the momentum and the dash denotes the resting frame of the electron. This magnetic

field in turn couples to the spin degree of freedom of the electron, and the resulting dependency of

the magnetic field on the orbital motion thus leads to the coupling of spin and orbit. For an electron

that moves inside a GaAs 2DEG, there are two main electric field contributions that lead to spin-orbit

interaction.

Dresselhaus SOI: The first electric field contribution stems from the zincblende crystal structure of

GaAs. Because it belongs to the tetrahedral point group Td, the zincblende crystal lacks an inversion

center. This so-called bulk inversion asymmetry (BIA) causes an electric field, and the resulting con-

tribution to the SOI is called Dresselhaus SOI [34]. For a 2DEG that is grown along the z-direction,

the bulk Hamiltonian is considered where x, y and z correspond to the crystallographic directions [1 0 0],

[0 1 0] and [0 0 1] respectively [35]. Considering the confinement in z-direction, the expectation value is

given as 〈pz〉 = 0, leading to the reduced Dresselhaus Hamiltonian

H2D
D ∝ [−px〈p2

z〉σx + py〈p2
z〉σy + pxp

2
yσx − pyp2

xσy], (10)

where pi are the components of the momentum vector ~p and σi are the components of the Pauli spin

vector ~σ. This reduced Hamiltonian consists of two terms that are linear and two terms that are cubic

in momentum. For a narrow 2DEG and thus strong confinement in z-direction, the cubic terms are

usually neglected because 〈p2
z〉 � p2

x, p
2
y [16], and the material-specific Dresselhaus coefficient βD can be

introduced, leading to

H2D
D = βD[−pxσx + pyσy]. (11)

Rashba SOI: The second contribution to the electric field arises from the confining potential of the

heterostructure which hosts the 2DEG. Here, the structural inversion asymmetry (SIA) of the triangular

quantum well creates an electric field in the GaAs side of the heterojunction. This contribution is called

Rashba SOI [36, 37]. When only the electric field caused by the confining potential is considered, i.e.
~E = (0, 0, Ez), this results in a Hamiltonian of the form

HR ∝ [ ~E × ~p]~σ = Ez[−pyσx + pxσy], (12)

which can also be written as

HR =
αR(z)

~
[−pyσx + pxσy]. (13)

In this expression, αR denotes the material-specific Rashba coefficient [16]. This prefactor can be ap-

proximated as

αR(z) = α0eEext + βBAδ(z), (14)

where the interface electric field Eext = ~2

2ml3ze
can be calculated from the 2DEG width lz [12, 38]. Fur-

thermore, α0 and βBA are material constants which are given in Ref. [39]. In expression (13), the term
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α0eEext is understood as the slope in the confining potential while the term βBAδ(z) stems from the

sudden jump due to the band gap offset of GaAs and AlGaAs.

𝑝𝑦

𝑝𝑥

𝑝𝑦

𝑝𝑥

Dresselhaus

Rashba

(a) (b) E

k

CB

HH

LH

SO

𝐸𝑔

Δ𝑆𝑂

Figure 5: (a) Diagram for the directionality of the internal magnetic field that an electron with momentum
~p experiences due to the Dresselhaus SOI and the Rashba SOI, drawn as blue arrows in the pxpy-plane.
(b) Band structure diagram in the effective mass approximation, shown around k=0. The conduction
band (CB) is separated from the heavy-hole (HH) and light-hole (LH) valence bands by the band gap
energy Eg. The upper HH and LH valence bands are separated from the split-off (SO) band by the
spin-orbit splitting ∆SO.

From the Hamiltonians given in Eq. (11) and Eq. (13), it is seen that the Dresselhaus SOI and the

Rashba SOI differ in their dependence on the direction of the electron momentum ~p. For the Dresselhaus

SOI, the effective magnetic field is aligned with the momentum in the y-direction while it is opposite to

the momentum in the x-direction. On the other hand, the effective magnetic field for the Rashba SOI

is orthogonal to the momentum for any direction. This is shown in Fig. 5a, where the magnetic field

direction that the moving electron experiences is shown in dependence of the momentum direction.

Band structure effects: In order to show the influence of spin-orbit effects on a quantity such as the

g-factor, the typical semiconductor band structure needs to be considered. Here, the region of interest lies

in the fundamental band gap that is schematically depicted in Fig. 5b as an effective mass approximation

around the Γ point at k=0. In this diagram, the lowest conduction band (CB) and the three uppermost

valence bands are shown. The conduction band is separated from the two upper valence bands (which

are called the heavy-hole (HH) and the light-hole (LH) band, stemming from the difference in their

effective mass m∗) by the band gap energy Eg. The last of the three valence bands is referred to as the

spin-orbit split-off band (SB) and is separated from the others by the spin-orbit splitting ∆SO. States in

the conduction band are s-like with an angular momentum quantum number L = 0, whereas the states

in the valence bands are p-like with L = 1. Considering only the simple picture where the experienced

magnetic field is proportional to the momentum, one would therefore expect weaker SOI effects to occur
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for electrons in the lowest conduction band than for holes in the valence bands. However, a thorough

analysis within the k · p theory framework [35] reveals that for electron and hole states alike, higher-order

coupling processes with the neighbouring bands lead to spin-orbit interaction effects that are on the same

order of magnitude. The extent to which the SOI affects the states in the conduction band is determined

by both the spin-orbit splitting ∆SO and the band gap energy Eg. This interplay of energies is for

example reflected in Roth’s formula [40], which approximates the effective g-factor in semiconductors as

g∗

2
=
g′

2
− 2m0

~2

P 2

3

(
1

Eg
− 1

Eg + ∆SO

)
. (15)

In this expression, P denotes the matrix element for the coupling between the conduction and valence

bands, g′ the g-factor without considering the coupling effects and g∗ the effective g-factor. Comparing

for example the materials GaAs (∆SO ≈ 0.34 eV, Eg ≈ 1.5 eV, g∗ = −0.44 ) and InAs (∆SO ≈ 0.38 eV,

Eg ≈ 0.42 eV, g∗ = −14.9) [35], GaAs has a similar spin-orbit splitting, but the much smaller band gap

energy of InAs leads to a far more negative effective g-factor and in general, electrons in InAs experience

a much stronger SOI.

2.4 Corrections to the g-factor

This section briefly summarizes the theoretical model and findings that are outlined in full detail in

Ref. [12]. These are follow-up calculations to the theoretical approach of Ref. [39], where the orbital

effects of an in-plane magnetic field on a 2DEG were investigated.1 The motivation here was that for

strong magnetic fields, the magnetic length lB =
√

~
eB becomes comparable to the width of the 2DEG,

thus making the treatment as a quasi two-dimensional system inaccurate. Using a perturbative approach

based on the k · p theory and the envelope function approximation [35], corrections to the excited orbital

state energies could be predicted and measured in experiment [32]. With the knowledge over these

orbital corrections, a new spectroscopy method that allows for the determination of the shape, size and

orientation of a quantum dot in such a device was established.

By also including the spin-dependent terms that arise from the aforementioned orbital effects, Stano

et al. predicted corrections to the g-factor that originate from a variety of spin-orbit terms. Namely,

these terms are not time reversal symmetric because they are generated by the magnetic field, and

therefore contribute to a correction of the g-factor in the lowest order. The calculations are based on

the Ogg-McCombe Hamiltonian [41,42], which contains terms that are allowed for the tetrahedral point

group Td and the relevant conduction band Γ6, going up to the fourth order in momentum and using

band structure coefficients from Ref. [43]. For the calculations, the quantum dot shape was chosen to be

nearly circularly symmetric in the 2DEG plane. The g-factor corrections that were obtained from this

perturbation theory are shown in Fig. 6, depending on the 2DEG width (a) and the magnetic field (b).

In Fig. 6a, solid (dashed) lines correspond to an in-plane magnetic field B = 0 T (B = 6 T) whereas in

Fig. 6b, solid (dashed) lines correspond to a 2DEG width of approximately 6.4 nm (10.4 nm).

In these plots, gr (gd) stems from higher-order contributions of the Rashba (Dresselhaus) SOI, whereas

the terms g43, g44, g45 originate from terms in the Ogg-McCombe Hamiltonian and g47 comes from an

additional term that was taken from Ref. [35]. The correction gp is caused by the penetration of the

wave function into the neighbouring AlGaAs material, thus causing a deviation from the g-factor of bulk

GaAs when the 2DEG becomes too narrow, which is a well researched effect [44, 45]. Furthermore, this

1Considering for example the application as a spin qubit, out-of-plane magnetic fields are avoided as they lead to strong
orbital effects due to the Lorentz force.
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(a) (b)

(c) (d)

B = 0 T B = 6 T 𝑙𝑧 ≈ 6.4 nm 𝑙𝑧 ≈ 10.4 nm

Figure 6: Predicted absolute corrections to the g-factor |δg| from Ref. [12], shown in dependence of
the 2DEG width lz (left graphs) and the magnetic field B (right graphs). These calculations assume the
quantum dot in the ground state and lowest subband, with orbital energies Ex = 2.34 meV and Ey = 2.61
meV, corresponding to lengths lx ≈ 22 nm and ly ≈ 21 nm. The quantum dot was assumed to be rotated
from the crystal axis [1 0 0] by an angle δ = 25◦ and the angle of the magnetic field relative to [1 0 0] was
set as φ = 45◦. (a) g-factor corrections for a fixed magnetic field and a 2DEG width ranging from 15
nm to below 4 nm. Solid lines denote the corrections at zero in-plane magnetic field while dashed lines
correspond to the case B = 6 T. (b) g-factor corrections for a fixed 2DEG width and a varying magnetic
field, ranging from 0 T to 10 T. Solid (dashed) lines correspond to a 2DEG width of approximately 6.4
nm (10.4 nm). (c) Same plot as in (a), but showing only the strongest correction values between 10−1

and 10−2. This reduces the set of correction terms to four terms, which originate from the Rashba SOI
(gr), the Dresselhaus SOI (gd), one of the SOI contributions from the Ogg-McCombe Hamiltonian (g43)
and the wave function penetration (gp), which falls below 10−2 for a 2DEG width over 5 nm. (d) g-factor
corrections from (b) shown in the range from 10−1 to 10−2. Only the terms g43, gr and gd lead to sizable
corrections for the two considered 2DEG widths. All figures are adapted from Ref. [12].

correction does not depend on the strength of the magnetic field. There is also a correction gz, which is

caused by the inhomogeneous g-factor in the bulk material. The corrections go up to the third order in

magnetic field, but none of them show linear dependence on the magnetic field.

Focusing on the most significant corrections above the magnitude of 10−2, there are four terms that

remain and are depicted in dependence of the 2DEG width lz in Fig. 6c. Considering lz ≈ 6.4 nm as

determined in [32], the Rashba SOI contribution gr and a generic SOI contribution g43 are the strongest

corrections. The correction from the Dresselhaus SOI is the third strongest, whereas the contribution

from the penetration of the wave function is below 10−2 for this 2DEG width. This can also be seen in

Fig. 6d, where gp is absent. In general, these g-factor corrections become weaker with an increasing lz.

For lz ≈ 6.4 nm, the corrections g43 and gd are close to constant in magnetic field, whereas gr slightly

decreases by approximately 10−2 over the range of 10 T.

Additionally, the directionality of the different g-factor corrections was considered. Looking at the

three strongest correction terms, gr and g43 are isotropic in the plane of the 2DEG whereas gd is
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(a) (b)

Figure 7: (a) Dependence of the g-factor corrections on the magnetic field direction, here shown with
the angle φ for zero in-plane field (solid curves) and an in-plane field of 6 T (dashed curves). Further
parameters are the same as for the graphs in Fig. 6. Although the terms gr and g43 dominate the g-factor
corrections, they don’t change with the direction of the in-plane field, thus constituting the isotropic part
of the corrections. The term gd is anisotropic with regards to the in-plane field directions and dominates
the anisotropic contribution to the g-factor. (b) Predicted dependence of the overall g-factor on the
direction of the in-plane magnetic field. The g-factor averages at a value around -0.33 and shows an
anisotropic correction δgvar with a variation around ±7%. The maximum of the g-factor is reached at
φmax = 135◦. The figures are adapted from Ref. [12].

anisotropic. This is shown in Fig. 7a, where the most relevant g-factor corrections (for lz ≈ 6.4 nm) are

plotted against φ, denoting the angle relative to the crystal axis [1 0 0]. Interestingly, and unlike for a

2DEG of larger width, the g-factor anisotropy is independent of the magnetic field. Using data from the

experiments in [14] and [32], Stano et al. predicted an average g-factor around -0.33 that varies by about

±7% depending on the angle φ, as shown in Fig. 7b.
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3 Materials and Methods

The measurements that are presented in this thesis were carried out on a spin qubit device based on the

GaAs/AlGaAs heterostructure shown in Fig. 1a. The wafer was grown by the Gossard group at UCSB.

It has a Si δ-doping concentration of nδ = 4 · 1012 cm−2, a mobility µ = 2.8 · 105 cm2

V s and a 2DEG density

n = 2.8 · 1011 cm−2. The depletion gates on top of the device are nominally the same as the ones shown

in the scanning electron micrograph in Fig. 2a. Negative voltages are applied to the gates, leading to the

formation of a quantum dot in the center of the device. Furthermore, a second quantum dot is formed

on the right side of the device, adjacent to the right wall gate RW, serving as a charge sensor. The main

quantum dot is tuned to the last electron regime. Furthermore, the sensor configuration is optimized

such that real-time tunneling events can be observed.

The gate CP is used as a pulsing gate by adding an AC pulse signal to its DC component. The pulses

are applied using a National Instruments USB-6366 DAQ device with a pulsing (readout) bandwidth of

3.3 MHz (2 MHz). The measurements are carried out in a dilution refrigerator (MCK 76 TOF Dilution

refrigerator, Leiden Cryogenics) with an electron temperature of 210 mK (see Sec. 4.1).2 Voltages

are applied on the gates and Ohmic contacts of the device using a low noise high resolution digital-to-

analog converter (LNHR DAC, Basel Precision Instruments). The current through the sensor quantum

dot is measured using a low noise high stability I/V converter (LNHS I/V converter, Basel Precision

Instruments) and read out with the DAQ. Lines that connect to the experiment show a resistance of

approximately 40 Ω and have microwave filters with a capacitance of 5 nF [46]. To reduce capacitance-

induced noise, some of the lines (namely, one line for an Ohmic contact at each of the two possible sensor

quantum dot sites) have microwave filters with a reduced capacitance of 2 nF. Though, for the experiment

described in this thesis none of the Ohmic contacts on the chip were disconnected. Thus, the two Ohmic

contact lines at the I/V converter are in parallel, leading to Rtot = 20 Ω and Ctot = 7 nF. This leads to

a technical bandwidth of approximately 1 MHz.3 The low pass filter on the I/V converter was set to 3

kHz and a gain factor of 107 was chosen.4

In order to apply an in-plane magnetic field, a superconducting solenoid (14/16T magnet, Cryogenics

Ltd) surrounds the fridge insert at the height of the chip holder. In our setup, this magnet can reach

a field strength of up to 14 T. The sample can be rotated with a piezo rotator (Attocube ANRv51)

around the axis perpendicular to the chip, thus making it possible to change the direction of the in-plane

magnetic field. By doing a Van der Pauw measurement (see Appendix A.1), the out-of-plane angle of the

magnetic field was determined to be smaller than 1.5◦ and thus assumed to be negligibly small for the

purpose of this experiment.

3.1 Measurement of the tunneling rate

As a starting point for the determination of the tunneling rate, the quantum dot level of the last electron

transition is tuned to the chemical potential µS of the reservoir, leading to a real-time charge sensing

signal such as the one shown in Fig. 4. The more thorough treatment of the following calculations can

be found in Ref. [47]. Here, the charge sensing signal (see Sec. 2.2.3) is regarded as a two-level system

being either in the ”on” (high conductance) or ”off” (low conductance) state. A threshold is chosen

2For the experiment presented in this thesis, a different plastic dilution unit than in the first device of Ref. [1] was used.
Here, the heat exchangers were less efficient, which prevented cooling below 100 mK.

3The technical bandwidth was calculated using fc = 1
2πRC

for an RC circuit.
4A higher cutoff frequency of 10 kHz or 30 kHz on the I/V converter caused problems with the noise - in our setup, the

higher harmonics of the 50 Hz noise were amplified at high magnetic fields due to coupling of vibrations at the refrigerator
gas handling system with the magnet, leading to Eddy currents.

19



3 MATERIALS AND METHODS

exactly halfway between the maximal and the minimal signal in order to distinguish the two levels. For

a quantum dot, it can be shown that the distribution of time intervals ton (toff ) that an electron resides

on (off) the dot has an exponential dependence on the tunneling rate (off) on the dot, i.e.

ρon(ton) ∝ exp(−Γoff ton), ρoff (toff ) ∝ exp(−Γontoff ), (16)

where Γon (Γoff ) is the tunneling rate on (off) the quantum dot [47]. This means that a high Γon (Γoff )

decreases the time intervals where the quantum dot is in the ”off” (”on”) state. Thus, the tunneling rates

can be obtained from fitting an exponential function through histograms of ton and toff .5 Furthermore,

the probability Pon for the electron to reside on the quantum dot can be expressed as a function of the

tunneling rates by

Pon =
1

1 +
Γoff
Γon

, (17)

and Poff = 1− Pon. The term in the denominator can also be written as

Γoff
Γon

=
1

2
exp(

−eαgVg
kBTe

), (18)

where e is the elementary charge, αg the lever arm of the gate, Vg the gate voltage, kB the Boltzmann

constant and Te the electron temperature. From Eq. (17) and (18) it becomes clear that the electron

transition follows a Fermi-Dirac distribution. Thus, the calculated tunneling rates are an useful instru-

ment for the extraction of the electron temperature. Also, in combination with a varying temperature

at the device, such probing of the transition can be used in order to determine the lever arm of a given

surface gate (see Sec. 4.1). An exemplary tunneling rate measurement along a transition is shown in Fig.

8, where the rates Γon and Γoff are shown in combination with the occupation probability Pon. At the

point where Γon ≈ Γoff , the chemical potential µ is aligned with the ground state level in the quantum

dot, thus allowing electrons to tunnel in and out of the dot with the same intermediate rate Γint.

3.2 Drift compensation algorithm

Prior to measurements, the quantum dot is tuned to a region of the last electron transition such as

in Fig. 4b, and the charge sensor is adjusted in order to maximize the signal-to-noise ratio. Before

describing the applied pulsing schemes in further detail, the stability of the quantum dot needs to be

considered. Especially when data are taken over hundreds of measurement rounds for proper statistics,

the electron transition needs to be traced over a time frame that can be upwards of 10 hours. At such

long times, random charge fluctuations in the wafer material will cause drifts in both the investigated

transition and in the charge sensor operating point. Therefore, the measurement protocols need to be

able to compensate for such drift processes. Here, this is done through the implementation of a drift

compensation algorithm that is usually applied before every measurement round. The algorithm changes

one of the gate voltages such that a certain fixed tunneling rate onto the quantum dot is obtained - this is

the set point for the drift correction.6 In its first step, the algorithm measures the rates Γon and Γoff as

explained in Sec 3.1. In order to calculate the incremental changes in voltage that are needed to reach the

5Here, the time intervals are plotted on a logarithmic scale and a line is fitted through, making the automatic fitting
process easier.

6Different set points are chosen for the protocols described in this section. For the excited states spectroscopy, the drift
compensation tries to reach the point where Γon = Γoff . In the tunneling rate measurements for the g-factor, a reference
point Γon = 20 Hz with a tolerance threshold Γtol = 3 Hz was used.
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Γint

ΓoffΓon

Pon

Figure 8: Occupation probability Pon (red dots), Γon (blue dots) and Γoff (orange dots) in dependence
of the plunger gate voltage Vplunger. A Fermi-Dirac distribution is fitted through Pon (solid line). Here,
an intermediate tunneling rate Γint = 312.7 Hz was measured.

set point, the transition is assumed to be at the exponential tail of the Fermi-Dirac distribution such that

Γon ∝ e
eαVg
kBTe . The logarithmic value of Γon along the transition is then used for the implementation of a

linear compensation. If Γon > Γset, the gate voltage will be made more negative for the next iteration, and

a less negative gate voltage will be applied if Γon < Γset. For a tunneling rate at the chemical potential

of about 100 Hz, a measurement time tmeas of about 10 s is chosen. The feedback loop continues until it

measures a rate Γon within a window close to Γset, defined by the tolerance threshold Γtol. If this is the

case, the drift compensation algorithm has succeeded and the measurement can begin.

3.3 Measurement of the lever arm

The lever arm of a given gate is an important quantity for the conversion of a change in gate voltage to a

change in energy. When the quantum dot is tuned closer to a gate, the lever arm of that gate increases,

i.e. a change in applied voltage leads to a larger change in energy. In Ref. [28] it was shown that for a

large set of dot geometries (spanning gate voltage differences of hundreds of mV), the lever arm of the

plunger gate remains fairly similar. In order to keep this assumption also valid for the experiments in this

thesis, an effort was made to keep the gate voltages close to a standard configuration for all measurement

points.7 Furthermore, in Ref. [28] it was also found that the lever arm does not depend on the magnetic

field for the range of fields that is used in the experiment. Thus, the lever arm measurement that is

explained here was only done for the standard gate configuration at zero magnetic field.

To measure the lever arm of the relevant central plunger gate, the quantum dot was tuned to the last

electron at an increased tunneling rate of approximately 300 Hz, such that a decreased measurement time

tmeas (see Sec. 3.2) of 5 s could be chosen. Furthermore, the temperature at the sample was increased to

7More exactly, only the gate voltages on CP, LW, N and SEP (left) were varied by at most 150 mV throughout the
measurements. This was done to bypass measurement artefacts from the reservoir and the decreasing tunneling rate at high
magnetic fields.
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a few hundred mK by applying a current to a heater in the mixing chamber. The reason for this is that at

base temperatures of a dilution refrigerator, it has been shown that the electron temperature Te exceeds

the temperature in the mixing chamber [28, 48]. Furthermore, the temperature-induced broadening of

the transition also reduces the uncertainty in the extracted lever arm. For the lever arm measurement

presented in this thesis, the coldfinger temperature TCF (RuO2 R-2Kxcmn-5coeff thermometer, read out

with a Picowatt AVS-47) was increased from its standard operating point of 150 mK up to an increased

temperature of 700 mK, where Te and TCF are assumed to be the same. Using the method presented in

Sec. 3.1, 4 to 10 measurements of Te were made for each value of TCF .

3.4 Measurement of the g-factor

In this thesis, the g-factor is determined through pulse-gate spectroscopy of the tunneling rate into the

empty quantum dot. This is done at the (0) ↔ (1) transition in Fig. 4b in dependence of the detuning

∆E from the pulsed plunger gate. In presence of an external magnetic field, spin degeneracy of the

ground state is lifted. In GaAs, this causes the spin state |↑〉 to become lower in energy than |↓〉 by

the Zeeman splitting ∆EZ = gµBB.8 The tunneling rate Γ(∆E) close to the Zeeman split transitions is

qualitatively explained by the expression

Γ(∆E) = Γ↑(∆E) + Γ↓(∆E)

= Γ0e
−β∆E

[
f(∆E, kBT ) + χf(∆E + ∆EZ , kBT )

]
.

(19)

Eq. (19) describes the tunneling rate as a sum of tunneling rates into the |↑〉 state (Γ↑) and into the |↓〉
state (Γ↓). In principle, the tunneling rate into these two states only increases when they are aligned

with the chemical potential µ of the reservoir. However, the states in the reservoir are occupied with a

Fermi-Dirac distribution, i.e.

f(∆E, kBT ) =
1

(e
∆E
kBT + 1)

, (20)

which means that the two resonance conditions ∆E = 0 (for |↑〉) and ∆E = ∆EZ (for |↓〉) in Eq. (19)

are thermally broadened. The prefactor originates from the WKB approximation, which describes the

tunneling rate Γ through a square tunnel barrier of height V0 and length l as

Γ ∝ ΓWKB · e−
√
βWKB(V0−E)). (21)

Here, ΓWKB is a scaling parameter and βWKB = 8m∗l2/~2 depends on the length of the tunnel bar-

rier. The square root in the WKB approximation can be linearized for small detunings, leading to the

dependence Γ(∆E) ∝ Γ0e
−β∆E as used here [49], where Γ0 and β depend on the properties of the tunnel

barrier. This WKB prefactor also explains the exponential decay of the tunneling rate when the dot levels

are pulsed beyond the point of resonance (see Fig. 9d and Fig. 10b), which is a result of the increasing

tunnel barrier.

Finally, in Eq. (19) there is a factor χ in front of the Fermi-Dirac distribution belonging to the

|↑〉 state. This factor gives the ratio between tunneling rates as χ = Γ↓/Γ↑ and thus describes a spin

tunneling asymmetry. Previous experiments in GaAs quantum dots have shown that the spin tunneling

asymmetry can vary from χ ≈ 1 down to χ � 1, decreasing with the strength of the in-plane magnetic

field [50]. This effect is unexpected because even though the spin states in the quantum dot differ in

8The g-factor in GaAs is negative - as opposed to the case of a free electron with positive g-factor, the spin ground state
is thus |↑〉 which is anti-aligned to the external field.
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energy by the Zeeman splitting ∆EZ , the conduction band is also subjected to Zeeman splitting and thus

should experience the same tunnel barriers. A conclusive theoretical explanation for this spin tunneling

asymmetry has not been found yet (the theoretical predictions for differences in χ due to a g-factor

difference between reservoir and dot are far smaller than in experiments), though it is suspected that the

effect mainly occurs because the g-factor in the reservoir is anomalously enhanced when it is subjected

to a lateral confinement [51,52].

(a)

(d)

Δ𝐸𝑍

(b)

167.1 𝜇𝑒𝑉

(c)

Figure 9: (a) Working principle of the pulse scheme for the g-factor measurement. The quantum dot is
first ionized by pulsing the ground state E0 above the chemical potential (I). Then, it is pulsed below
the chemical potential µ with an amplitude of ∆E, resulting in the dot being loaded with an electron
(II). (b) Overlay of an exemplary pulse (dashed) and the measured charge sensor conductance (solid).
The charge sensor conductance during pulse step (I) is shown in blue, whereas the signal during (II) is
colored red. When the previously ionized dot is pulsed to (II), it takes a loading time tL until the dot is
occupied with an electron. Figures (a) and (b) are adapted from Ref. [1]. (c) By fitting a line through
the log-scaled histograms of tL, the tunneling rate Γ for a point ∆E is obtained. (d) Exemplary data
of a g-factor measurement, showing the tunneling rate in dependence of the detuning ∆E. The Zeeman
splitting ∆EZ is the energy between the two spin states by fitting Eq. (19), shown in green.

Pulse scheme: Prior to the g-factor measurement, the quantum dot is tuned to the transition of the

last electron at an intermediate tunneling rate of approximately 100 Hz, which is determined with the

method in Sec. 3.1. To measure the tunneling rates of the Zeeman split spin states, a two-step square

voltage pulse is applied to the central plunger gate (CP in Fig. 2a). The two steps of the pulse correspond

to the configurations that are shown in Fig. 9a: First, the states in the quantum dot are pulsed above

the chemical potential of the reservoir, which causes any electron in the quantum dot to quickly tunnel

into the reservoir. This ionization occurs much faster than the bandwidth of the charge sensor. Then, the

states are pulsed below the chemical potential. At this configuration, an electron will tunnel into the dot

after a loading time tL given by Γon, which is observed in the charge sensor signal as shown in Fig. 9b.

To keep the charge sensor at its sensitive operation point, a weaker compensation pulse of opposite sign
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is simultaneously applied to the sensor plunger gate. By repeating this scheme for up to 20’000 cycles, it

is then possible to extract tunneling rates by fitting histograms of tL as shown in Fig. 9c.

This measurement protocol is carried out for 100 to 400 rounds in total, where each of the rounds

works as follows: First, the drift compensation algorithm (see Sec. 3.2) is applied using a set point of 20

Hz which corresponds to ∆E = 0. After the algorithm has converged, the pulse scheme described above

is used for different values of ∆E across the transition, using pulse times of 2 ms at the ionization step

and 30 ms at the loading step. In order to avoid hysteresis effects, the sequence of detuning values is

chosen randomly. In presence of a magnetic field, such a measurement allows for the extraction of the

Zeeman splitting ∆EZ by fitting the data and determining the energy difference between the Fermi edges

corresponding to the two spin states. Here, fits are either made with Eq. 19 itself or an adjusted version

of it with different factors β for the two spin states. In the case that fitting with these functions does

not succeed, owing to resonance artefacts or suppressed tunneling into the excited spin state (see Sec.

4.3), a sigmoid function is fitted to the two spin transitions. These fit procedures yield very comparable

Zeeman energies, which is the quantity of interest for this work.

3.5 Measurement of excited orbital states

In lateral GaAs quantum dots, the shape can be changed with the surface gate voltages (see Sec. 2.2.1).

For example, the dot shape has been shown to have an effect on the spin-relaxation time T1 due to the

mixing of the orbital and spin states [53]. As it has been outlined in theory [39] and experiment [32],

probing of the excited orbital states in a magnetic field gives insight on the shape of the quantum dot:

Under assumption of a harmonic dot confinement, the energy Ex of the first excited orbital state that is

oriented along x̂ = [1 1 0] will increase when the dot is squeezed along this direction, and the same happens

for the Ey orbital state when it is squeezed along the ŷ = [1 1 0] direction. These orbital energies are on the

order of a few meV for usual experimental parameters, and a change in shape is compensated with gates

perpendicular to the squeezing direction in order to keep the ground state energy constant. Considering

for example a dot that is squeezed in x̂ and elongated in ŷ, it follows from the above made considerations

that the energy Ex will be higher than Ey. This tuning of the shape can be done continuously, ranging

from a dot that is squeezed in x̂ with Ex > Ey to a dot that is squeezed in ŷ with Ey > Ex. At the

crossover point where Ex ≈ Ey, the dot is symmetric [32,50].

Whether an excited orbital state is Ex or Ey can be identified by applying an in-plane magnetic field:

If the directions of the magnetic field and the orbital state are the same, its energy will remain constant

with increasing field strength while the energy of the orthogonal orbital will decrease [39]. For example,

an increasing magnetic field along the x̂ direction will leave Ex unchanged and decrease Ey. Therefore,

this spectroscopy technique allows to fully describe the orientation of the orbitals. From the behaviour

of the state which is not constant in magnetic field, the energy Ez can be obtained, thus allowing to fully

determine the three-dimensional shape of the quantum dot.

Pulse scheme: As for the g-factor measurements, the pulsing for the characterization of excited orbital

states is done with the central plunger gate CP. Prior to the protocol, the tunneling rate into the ground

state is tuned to a value between 10 and 100 Hz. The idea of the pulse scheme is illustrated in Fig.

10a. Here, the pulse sequence consists of three steps. The dot is initialized (I) by pulsing the ground

state above the chemical potential of the reservoir µ, leading to its fast ionization as the electron tunnels

out of the dot. Next, the dot is charged (II) by pulsing the quantum dot below µ by an amplitude ∆Vp

(for a short time compared to the tunneling rate into the ground state). When an excited orbital state
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(a)
(I) (II) (III)

(b)
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Figure 10: (a) Working principle of the pulse scheme for the measurement of excited orbital states. The
quantum dot is first initialized (I) by pulsing the ground state above the chemical potential µ of the
reservoir. Then, it is charged (II) by pulsing at an amplitude ∆Vp for a time tw. When an excited orbital
state is brought into resonance with µ, it tunnels in with a rate Γin and then decays to the groundstate
at a relaxation rate W . Finally, charge readout (III) is carried out by pulsing the ground state into
resonance with µ for 500 µs, which allows to extract the occupation probability Pon at a given ∆Vp.
Adapted from Ref. [28]. (b) Exemplary data of an excited orbital state measurement, showing Pon in
dependence of ∆Vp. The excited orbital state energies are indicated with arrows.

comes into resonance with µ in this step, the tunneling rate into the dot Γin drastically increases. This

happens because the excited orbital states have a much stronger tunnel coupling to the reservoir than

to the ground state. In the depicted range of energies, only one electron can occupy the dot at a time

because the larger charging energy puts the dot into Coulomb blockade.

The tunneling rates into the excited orbital states are on the order of tens of kHz and thus not directly

resolvable as they exceed the charge sensor bandwidth of 3 kHz. This issue is addressed by considering

the pulse bandwidth of the gates, which is approximately 1 MHz: As depicted in Fig. 10a, in the charging

step the excited orbital state is brought into resonance with µ for a time tw, which is usually chosen on the

order of tens to hundreds of µs. Here, an electron that occupies an excited orbital state will quickly decay

into the ground state, which happens on a GHz timescale. After this fast decay, the electron is trapped

in the ground state. Having waited for tw in the protocol, the ground state is pulsed into resonance with

µ for the readout step, where the charge sensor is monitored for 500 µs (corresponding to a timescale of

2 kHz). During the readout time, four different events can be distinguished on the charge sensor: The

dot can either be loaded (if a tunneling event has occured during charging), emptied, have an electron

tunnel into the empty dot or have it tunnel out of the dot. Because the intermediate tunneling rate of the

ground state is tuned to below 100 Hz for this protocol, the last two events only make out a few percent

of the signal and are neglected for the calculation of an occupation probability Pon. By scanning over

different pulse detunings ∆Vp at a constant tw, a plot such as shown in Fig. 10b is obtained, revealing

the excited state energies Ex/y = αp ·∆Vp,Ex/y in combination with the lever arm αp. The exponential

decay in Pon with increasing ∆Vp stems from the increasing tunnel barrier in the WKB approximation

(see Sec. 3.4).
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4 Results and discussion

This chapter presents the findings of this thesis. First, the determination of the lever arm that is essential

for all subsequent results is shown in Sec. 4.1. Then, the excited orbital state measurements are presented

in Sec.4.2, which allows to extract the shape parameters of the investigated quantum dot. Finally, the

experimental challenges regarding the g-factor measurements are elucidated in Sec. 4.3, followed by the

measured data for the corrections to the g-factor in Sec. 4.4.

4.1 Lever arm

Multiple measurements such as the one explained in Sec. 3.1 were carried out and from the fitted Fermi-

Dirac distributions, values of the width ∆Vp for the central plunger gate CP were obtained at different

temperatures TCF of the cold finger thermometer. Choosing a point where Te is assumed to be equivalent

to TCF [54], the lever arm αp is then calculated using the relation

αp =
kBTCF

∆Vp
. (22)

Using the values kB = 86.17 µeV
K , TCF = 658± 5 mK and ∆Vp = 1.07± 0.06 mV, a value of

αp = 53.06± 2.80
µeV

mV

is obtained (the detailed error propagation can be found in Appendix A.2). With this lever arm, the

electron temperature Te =
αp∆Vp
kB

can be extracted, which is shown in Fig. 11 in dependence of TCF . At

coldfinger temperatures above approximately 300 mK, Te ≈ TCF . Approaching the base temperature at

lower TCF , Te begins to deviate from TCF due to parasitic heat leaks. For a point close to the refrigerator

Figure 11: Electron temperature Te (red dots) in dependence of the cold finger temperature TCF . The
solid black line corresponds to Te = TCF . At cold finger temperatures below approximately 300 mK, Te
is found to be higher than TCF . The error bars are obtained from the error propagation in Appendix
A.2.

26



4 RESULTS AND DISCUSSION

base temperature, reading TCF = 156.6 mK, a width ∆Vp = 0.34 ± 0.01 mV was measured. Applying

the above calculated lever arm to this gives an electron temperature Te = 212± 3 mK.

4.2 Excited orbital states

In order to determine the shape properties of the investigated quantum dot, measurements of the excited

orbital states were done as a function of the magnetic field. While the g-factor corrections only show

a weak dependence on the two-dimensional shape of the quantum dot in the 2DEG plane (i.e. Ex and

Ey) [12], a strong dependency on the width lz can be observed in Fig. 6a and 6c. Therefore, extracting

Ez from the excited orbital state data is also important for the analysis of the g-factor corrections.

Figure 12: Excited orbital state energies EEOS for different in-plane magnetic fields B‖ in the direction
φ = 241◦, along with the extracted parameters from the fit to Eq. (23) (dashed curves). In this range
of energies, the three orbital energies Ex, Ey and Ex,2 are visible. Here, Ex,2 is the second harmonic of
Ex, δ the angle of the quantum dot axes relative to [1 0 0] and the energy Ez contains information on the
2DEG width.

Fig. 12 shows the measured excited orbital energies as a function of the in-plane magnetic field B‖ for

an angle φ = 241◦ relative to the [1 0 0] direction. The spatial extent of the quantum dot wave function

can be determined in all three dimensions by fitting the excited orbital energies Enx and Eny with the

equation

δEnx,ny = −Φ2

2

[
~ωxsin2(δ − φ)(nx + 1/2) + ~ωysin2(δ + π/2− φ)(ny + 1/2)

]
. (23)

Here, it is assumed that the flux due to the in-plane field Φ = e
~Bλ

2
z (which is specifically defined for

Ref. [12, 39]), with λz the effective width of the wave function along ẑ, is far smaller than 1, and that

inter-subband corrections can be neglected as only the lowest subband of the 2DEG is occupied [28,32].

The obtained energies ~wi correspond to the case B = 0 T. By using the relation ~wi = ~2/(m∗l2i ), the
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lengths li of the quantum dot can then be calculated, resulting in the values

lx = 25.84± 0.08 nm, ly = 19.53± 0.04 nm, lz = 6.68± 0.14 nm.

Here, the uncertainties are the standard deviations obtained from the fit. The parameter δ = 6.2◦± 3.1◦,

which describes the in-plane angle of the quantum dot axes relative to the [1 0 0] direction, is close to

zero with a high relative uncertainty. For a quantum dot whose x-orbital is aligned with the x̂ direction,

this angle is δ = 45◦. In order to determine this angle more reliably, more extensive measurements of Ex

and Ey in dependence of the in-plane angle φ would be necessary, as it was done in Ref. [32]. In that

work, a smaller 2DEG width lz = 6.3± 0.3 nm was determined.

When comparing the excited state energies Ex ≈ 1.7 meV and Ey ≈ 3 meV, it is recognized that one

of the energies noticeably exceeds the other, such that the quantum dot here is very close to the condition

Ey ≈ 2Ex. In such a case, the quantum dot is strongly elongated in one direction, hence why this regime

is referred to as a quasi-one-dimensional dot. A very interesting property of such a dot geometry is that

the field-induced corrections to Ex and Ey are predicted to be in phase with respect to the in-plane angle

φ (see Fig. 4c and 4d of Ref. [39]). In stark contrast to this, the corrections for a symmetric dot (where

Ex ≈ Ey) in dependence of φ are phase-shifted by 180◦. However, for the g-factor corrections that are

the central topic of this thesis, the theory predicts that the dot shape only has a weak effect [12].

4.3 Challenges during the g-factor measurements

There are several factors that made measuring the g-factors a challenging task. With increasing magnetic

field, the tunneling rate was observed to decrease. To compensate this, the gates which define the tunnel

barrier of the dot were tuned to slightly less negative voltages (within tens of mV) for increasing magnetic

fields, which could sometimes make the quantum dot unstable. For example, in certain gate configurations

the quantum dot was subjected to low frequency charge noise (switchers) that occurred on a time scale of a

few hours, such that it was suddenly no longer possible to track the transition with the drift compensation

mechanism explained in Sec. 3.2. Overall, the sample was only stable for a narrow parameter space in

gate voltages and it was not possible to tune the elongated quantum dot to a more symmetric shape.

The sample that was investigated in this thesis was fabricated on a wafer with different properties

(see Sec. 3) than the one used for the first device in Ref. [1], which had a dopant density of nδ = 6 · 1012

cm−2, a mobility of µ = 4 · 105 cm2

V s and a 2DEG density of n = 2.6 · 1011 cm−2. The 2DEG was less

stable, such that the success rate of the measurements in this thesis was lower than in the previous

experiment. Furthermore, a sizeable amount of measurements were not useful because they showed

additional resonances of the tunneling rate in dependence of the plunger gate voltage such as the one

shown in Fig. 13, thus preventing the identification of the excited spin state. These resonances could

originate from localization effects in the electron reservoir (which could be further increased due to

the slightly lower mobility of this sample compared to the previous experiment): In combination with

the confinement of the depletion gates close to the tunnel barrier, the low-dimensional character of the

localization effects could modulate the density of states in the reservoir. As a result, the density of

states could deviate from the energy-independent 2D density of states (Eq. (2.1)) and gain an energy-

dependence, which would manifest itself as additional resonances of the tunneling rate [52]. In order to

avoid these reservoir artefacts, measurements in which they appeared were repeated at slightly altered

gate configurations until the two spin states could be distinguished. This succeeded most of the time

through a change of gate voltage at the left SEP gate of the reservoir (see Fig. 2a) within a range of
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Figure 13: Example of a tunneling rate measurement (φ = 270◦, B = 7.5 T), showing the additional
reservoir artefacts which interfere with the extraction of the Zeeman splitting. The expected voltages of
the two spin states are indicated with arrows.

100 mV (tuning the gate beyond this range was avoided in order to leave the lever arm αp unchanged).

The reason as to why this works could be that too negative gate voltages at the reservoir could give it a

point-like character, thereby increasing the presence of reservoir artefacts. In cases where changing the

SEP gate voltage was also unsuccessful, measurements were repeated at a slightly different magnetic field

strength.

In the data, the decrease in the spin tunneling asymmetry factor χ with an increasing magnetic field

as proposed by Amasha et al. [50] could also be observed on a qualitative level. This behaviour made it

harder to fit to the second spin state at high magnetic field as it became increasingly obscured by smaller

resonances. Additionally, it was observed that changing the gate voltages of the tunnel barrier (gates

LW and N) while staying at the same magnetic field strength could change the measured χ. Overall,

the suppressed χ along with the reservoir artefacts led to higher fitting errors for the extracted Zeeman

splittings. Furthermore, the acquisition of data points at high magnetic fields above 10 T was difficult

due to increased noise levels due to pump vibrations coupling into the fridge.

4.4 g-factor corrections

From fits through tunneling rate measurements such as the one presented in Fig. 9d, the Zeeman

splittings were obtained for different magnetic field directions and strengths. The uncertainties for the

energy difference were obtained from the fitting errors (see Appendix A.2).

By plotting ∆EZ against µBB and performing a linear fit to the data, the absolute value of the

g-factor is obtained as the slope. An example is shown in Fig. 14 for the magnetic field direction along

[1 1 0]. Considering the angle φ from the theory which is defined with respect to the [1 0 0] direction

(see inset of Fig. 15), the direction [1 1 0] corresponds to φ = 315◦. Under the assumption that the
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corrections follow a sinusoidal behaviour with a periodicity of 180◦ (see Fig. 7a), the g-factor for this

direction is considered as equivalent to the one at φ = 135◦. In the presented plot, an absolute value of

|g| = 0.365 ± 0.006 was obtained. The relative uncertainties in the Zeeman splitting and thus g-factor

are on the order of a few percent, owing to the fairly large fitting errors δ(∆VZ) for some data points

(see Appendix A.3 for the individual data points), along with a low number of data points for each field

direction. Here, problems with reservoir artefacts that masked the excited spin tunneling peak led to a

decreased number of useful data points (see Sec. 4.3). The uncertainty bounds could be further reduced

by taking even more data points, e.g. by measuring smaller steps in the magnetic field in order to bypass

some of the reservoir artefacts.
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Figure 14: Extracted Zeeman splittings ∆EZ , plotted against µBB for magnetic fields of 5, 8, 10 and 12
Tesla. The error bars are obtained from the statistical uncertainty of the fits (see Appendix A.2). The
angle φ = 315◦ corresponds to a magnetic field in the [1 1 0] (ŷ) direction. Doing a linear fit through
the data (red line) reveals the absolute value of the dimensionless g-factor as the slope, along with a
statistical uncertainty. The confidence band within one standard deviation is indicated with black lines.

The extraction of the g-factor for different angles φ shows an anisotropy of the g-factor, with values

ranging from |g| ≈ 0.365 for φ = 315◦ to |g| ≈ 0.415 for φ = 241◦ (the corresponding fits are shown

in Appendix A.4). The different g-factors, along with an additional data point for φ = 225◦ that was

measured in the same device during the writing process of this thesis, are plotted in Fig. 15. In order to

allow comparison to the predicted corrections from Ref. [12] (see Sec. 2.4), the g-factor corrections are

separated into an anisotropic correction δga and an isotropic correction δgi that are applied to the bulk

g-factor gbulk = −0.44, i.e.

g = gbulk + δgi + δga · sin(2φ+ π). (24)

By fitting a sinusoidal function through the extracted g-factors for different φ (see Appendix A.5), a

mean value of |ḡ| = 0.396± 0.003 is obtained. From theory, this mean value is considered to only include

the isotropic correction to the bulk g-factor, such that δgi = 0.044 ± 0.003. This result is considerably

lower than the theoretical prediction δgi,theory ≈ 0.11 (see Fig. 6d). Furthermore, the amplitude of the

sinusoidal fit is taken as the anisotropic correction, yielding δga = 0.025 ± 0.004, which is reasonably

close to the predicted δga,theory ≈ 0.024 (see Fig. 7a). The anisotropic correction δg from ḡ ≈ −0.396 is

shown in dependence of φ in Fig. 16. Although the uncertainties for the extracted g-factor are significant
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Figure 15: Extracted Zeeman splittings ∆EZ for different strengths and directions of the in-plane mag-
netic field B, showing a noticeable anisotropy of the g-factor. The fits for the extracted g-factors (solid
lines) and the GaAs bulk g-factor (dashed line) are also shown. Corresponding crystallographic directions
of the measurements are indicated with colors in the inset.

compared to the magnitude of the prediction, a clear trend can be observed between the data for the

[1 1 0] direction and the data close to the [1 1 0] direction. Considering the relative correction to the

g-factor, a ratio δga/|ḡ| = 6.3± 0.8% is obtained, which is very close to the theoretical prediction of 7%.

Here, it needs to be noted that the theoretical predictions were made for a wafer with different

properties that was used to fabricate the first device in Ref. [1] (see Sec. 4.3). The quantum dot on

that wafer was also more stable than the one that was investigated in this thesis. Measurements on this

other sample yielded values of |ḡ| = 0.373 ± 0.001, δgi = 0.067 ± 0.001, δga = 0.030 ± 0.002 and a ratio

δga/|ḡ| = 8.1± 0.5%. The anisotropic behaviour of the g-factor in that sample is also plotted in Fig. 16.

The uncertainties in g-factor for that sample were smaller than for the sample measured in this thesis.

A reason for this is that the measurements presented in this thesis have a lower amount of data points

for each field direction. Conversely, there were more different field directions measured in the device of

this thesis than in the previous device.

While the measured values for the anisotropic correction δga are reasonably close to the prediction,

the measured isotropic correction δgi is only about 40% of the predicted value. Considering the plot

for the predicted corrections in dependence of lz (Fig. 6c), one expects such an isotropic correction at

lz ≈ 13 nm instead of the width lz ≈ 6.7 nm that was obtained in the measurement of the excited orbital

states (Sec. 4.2). Also, repeating this procedure for the other device with δgi ≈ 0.07 leads to lz ≈ 10 nm

instead of the width lz ≈ 6.3 nm that was obtained in Ref. [32] in a more thorough measurement. For

both devices, the widths lz that would be obtained from the isotropic correction alone are in a regime
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Figure 16: Theoretical predictions for the anisotropic g-factor correction gD along with the isotropic
corrections g43 and gR. The g-factor data measured in this thesis (yellow triangles), along with a data
point for φ = 225◦ (purple triangle) which was measured in the same device during the writing process
of this thesis. Together with the experimental data from the preceding device [1] (black dots), the data
points are plotted on top of the prediction, showing good agreement with the theory. The error bars are
obtained from the fitting errors.

where the g-factor corrections δgd and δgr are predicted to become strongly suppressed at increasing

magnetic field as can be seen in Figs. 6c and 6d. Such a behaviour was not observed in the experiments,

where the Zeeman splitting was measured to be linear over a large range of magnetic fields.

There are several possible sources that could contribute to the above described discrepancies. First,

the large uncertainty of ≈ ±5% in the lever arm increases the uncertainty of the extracted g-factors.

For example, a smaller lever arm would decrease |ḡ| and δga while increasing δgi. Furthermore, it could

be that despite selecting for data without reservoir artefacts, some of the extracted Zeeman splittings

could still be altered by this effect. Looking at the data in Fig. 14 and Appendix A.4, there are indeed

some points that do not fit nicely on the g-factor slope and even come too close to the slopes at other

directions, as can be seen in Fig. 15.

Besides the experimental limitations, there are also possible sources of deviations in the theoretical

model. Here, the negligence of strain-induced SOI and simplifications in the heterostructure confinement

potential could lead to further corrections to the theory [28]. Furthermore, there might be inconsistencies

in the k · p constants used for the model [12]: Considering again the plot in Fig. 6c and fixing the width

at lz ≈ 6.7 nm from the excited orbital state data, it is seen that the measured total isotropic correction

δgi ≈ 0.044 is weaker than both predicted isotropic corrections δgr ≈ 0.07 and δg43 ≈ 0.05. Under the

assumption that δgr and δgd are better established in theory than δg43, the data suggests that δg43 has a

negative sign. Applying the same thought process to the other device, a value δg43 ≈ 0 would be obtained

there.
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5 Conclusions and outlook

A wide array of pulse-gate spectroscopy techniques was used in order to characterize the shape and

g-factors of a quantum dot in a single-electron spin qubit device. The characterization of the excited

orbital states allowed to determine a 2DEG width lz = 6.68± 0.14 nm. Furthermore, it turned out that

the investigated quantum dot is elongated along one direction, which is an interesting regime due to the

changing behaviour of the orbital energies with respect to the direction of the in-plane magnetic field. The

investigated sample was less ideal than its predecessor due to the reduced mobility and a higher incidence

of switchers. Despite these experimental challenges, a statistically significant g-factor anisotropy could

be measured, showing values between |g| = 0.365± 0.006 and |g| = 0.415± 0.006 when the in-plane angle

φ is varied within a range of 74◦. The observed behaviour is in agreement with the theory by Stano et

al. [12], which predicts an anisotropic correction originating from the Dresselhaus SOI (gd) along with

an isotropic correction arising mainly from the Rashba SOI term (gr) and the bulk SOI term H43 (g43).

While the measured anisotropic correction δga was found to be in well agreement with the prediction,

the isotropic correction δgi was determined to be only approximately 40% of its predicted value.

Together with the previous data for a different wafer, the presented results could help determining

the k · p parameters that are relevant for the calculation of such g-factor corrections with an increased

accuracy. Because these parameters are known to depend strongly on the 2DEG width lz, this research

could be extended by investigating samples with a higher lz. For example, in the regime lz > 10 nm it is

predicted that the corrections to the g-factor decrease by an order of magnitude.

The presented experiment is limited by a few factors. First, the observed reservoir artefacts in the

tunneling rate data combined with the sometimes strongly suppressed spin tunneling asymmetry factor

χ led to a small success ratio of below 20% for the measurements. Because a measurement could take

up to 10 hours in total for one configuration, the measurement efficiency was quite low. To address

this, it should be possible to decrease the point-like character of the tunnel-coupled reservoir as was

done in Ref. [52], thereby reducing the amount of reservoir artefacts in the measured data. Second, the

experiment is limited by the systematic uncertainty of the lever arm of approximately 5% (see Appendix

A.2), which acts globally on the set of obtained g-factors. Despite this limitation on the accuracy of the

measurements, it is nonetheless possible to achieve a high precision, making it possible to resolve the

small changes in the g-factor with the field direction and thereby characterize the g-factor anisotropy.

Thinking beyond this experiment, the obtained resolution of g-factor measurements could be improved by

doing an electric dipole spin resonance (EDSR) experiment such as described in Ref. [55], which allows to

extract the g-factor with an even higher resolution. Though, the shaking of the electron in one direction

that would occur in such an experiment might also affect the measurement of the g-factor anisotropy and

would possibly also need to be addressed by the theory. Furthermore, the application of pulses in the

range of GHz in such an experiment could also affect properties of the quantum dot such as the charge

stability. Nonetheless, doing either an EDSR experiment or a measurement of the spin relaxation time

T1 as was done in Ref. [14] would also allow to extract the corrections gd and gr, which can be indirectly

used to quantify the magnitude of g43.

Finally, it should be emphasized that, together with the measurements in the preceding device with

this setup [1], the measurements presented in this thesis constitute the first experiment where the g-factor

anisotropy has ever been determined within the same GaAs spin qubit devices. As such, this knowledge

on the behaviour of the g-factor is a valuable ingredient for the operation of spin qubits.
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A APPENDIX

A Appendix

A.1 Van der Pauw measurement

The in-plane magnetic field that is applied for the g-factor measurement can be significantly large, ranging

up to 12 T. Because large out-of-plane components can lead to the formation of Landau levels, it is crucial

to have a good alignment of the sample with the external field. To determine the out-of-plane angle ξ

of the sample, a Van der Pauw measurement of the Hall resistance was made. Under knowledge of the

Hall coefficient RH,⊥ for an out-of-plane magnetic field, the dependence RH,‖ = RH,⊥ · sin(ξ) allows to

extract ξ. Such measurements of RH,‖ were repeated for different angles θ of the ANC piezo rotator,

leading to the plot in Fig. A1 that shows the dependence of ξ on θ (to get the in-plane angle φ that is

relevant for the theory, the relation θ = 495◦ − φ is applied). Here, ξ has a periodicity of 360◦ in θ and

is under 1.5◦ at its maximum around roughly θ = 300◦, which is close to the crystal direction [1 0 0].

Figure A1: Extracted out-of-plane angle ξ from the Van der Pauw measurement in dependence of the
angle θ of the piezo rotator. The measured points allow for a good sinusoidal fit with a 2π-periodicity.
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A APPENDIX

A.2 Error propagation

A.2.1 Lever arm αp

In order to estimate the uncertainty of the lever arm δαp more accurately, a Gaussian error propagation

can be performed with Eq. (22) while assuming that TCF and ∆Vp are statistically independent from

each other. This leads to the result

δαp =

√
(
∂αp

∂(∆Vp)
· δ(∆Vp))2 + (

∂αp
∂TCF

· δTCF )2 =

√
(
−kBTCF
(∆Vp)2

· δ(∆Vp))2 + (
kB

(∆Vp)
· δTCF )2 ,

where δ(∆Vp) is the standard deviation obtained from the Pon measurement and δTCF = 5 mK is an

estimated systematic error from the AVS-47 temperature readout. Inserting TCF = 658 mK, ∆Vp = 1.069

mV and δ(∆Vp) = 0.056 mV, one then obtains δαp = 2.799 µeV
mV , which is an uncertainty of approximately

5%. Here, it is worth noting that the uncertainty of the lever arm is a systematic effect, acting on the

whole set of measured g-factors rather than on each individual value.

A.2.2 Zeeman splitting ∆EZ

The uncertainty of the energy differences ∆EZ is obtained by applying the lever arm αp to the statistical

uncertainty ∆VZ of the fits through the tunneling rate measurement data: ∆EZ = αp∆VZ . The uncer-

tainty of the lever arm doesn’t go into this calculation because it is a systematic effect that acts on the

whole set of measured g-factors, thus limiting only the accuracy (closeness of a measurement to its true

value), and not the precision (closeness of measurements to each other) of the measurements.
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A.3 Measured Zeeman splittings

𝜙 = 315°
B = 5 T

𝜙 = 315°
B = 8 T

𝜙 = 315°
B = 12 T

𝜙 = 315°
B = 10 T

𝜙 = 292.5°
B = 5 T

𝜙 = 292.5°
B = 6.5 T

Δ𝑉𝑍 = 1.87 ± 0.10 mV Δ𝑉𝑍 = 2.94 ± 0.12 mV 

Δ𝑉𝑍 = 4.22 ± 0.08 mV Δ𝑉𝑍 = 4.65 ± 0.09 mV 

Δ𝑉𝑍 = 2.12 ± 0.10 mV Δ𝑉𝑍 = 2.88 ± 0.10 mV 

Figure A2: Data set #1 of the tunneling rate Γ in dependence of the pulsed plunger gate voltage ∆Vplunger
for in-plane magnetic fields B at different angles φ. The voltage difference from the Zeeman splitting
∆VZ was obtained from fits of either Eq. (19) with two different factors β (purple) for the two spin states
or a sigmoid function (blue, disconnected fits).
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𝜙 = 292.5°
B = 8 T

𝜙 = 292.5°
B = 10 T

𝜙 = 270°
B = 5 T

𝜙 = 292.5°
B = 12 T

𝜙 = 270°
B = 6.5 T

𝜙 = 270°
B = 8 T

Δ𝑉𝑍 = 3.10 ± 0.13 mV Δ𝑉𝑍 = 4.26 ± 0.12 mV 

Δ𝑉𝑍 = 5.00 ± 0.27 mV Δ𝑉𝑍 = 2.25 ± 0.21 mV 

Δ𝑉𝑍 = 2.94 ± 0.10 mV Δ𝑉𝑍 = 3.47 ± 0.12 mV 

Figure A3: Data set #2 of the tunneling rate Γ in dependence of the pulsed plunger gate voltage ∆Vplunger
for in-plane magnetic fields B at different angles φ. The voltage difference from the Zeeman splitting
∆VZ was obtained from fits of either Eq. (19) with two different factors β (purple) for the two spin states
or a sigmoid function (blue, disconnected fits).
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𝜙 = 270°
B = 9 T

𝜙 = 241°
B = 5 T

𝜙 = 241°
B = 8 T

𝜙 = 241°
B = 6.5 T

𝜙 = 241°
B = 9 T

Δ𝑉𝑍 = 3.97 ± 0.12 mV Δ𝑉𝑍 = 2.33 ± 0.17 mV 

Δ𝑉𝑍 = 2.97 ± 0.07 mV Δ𝑉𝑍 = 3.66 ± 0.12 mV 

Δ𝑉𝑍 = 4.05 ± 0.05 mV 

Figure A4: Data set #3 of the tunneling rate Γ in dependence of the pulsed plunger gate voltage ∆Vplunger
for in-plane magnetic fields B at different angles φ. The voltage difference from the Zeeman splitting
∆VZ was obtained from fits of either Eq. (19) (green), Eq. (19) with two different factors β (purple) for
the two spin states or a sigmoid function (blue, disconnected fits).
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A.4 Extracted g-factors for further angles
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Figure A5: Obtained fits (solid, coloured lines) and extracted absolute g-factor values for in-plane angles
φ = 292.5◦, φ = 270◦ and φ = 241◦. The confidence band within one standard deviation is indicated
with black lines. Brackets indicate equivalent angles due to the 180◦-periodicity of the corrections in φ.
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A.5 Sinusoidal fit for the calculation of δgi and δga

0.44

0.40

0.36

0.32

|g
|

360340320300280260240220200180

ANC angle θ (°)

Coefficient values ± one standard deviation
y = 0.396 ± 0.003
A = 0.025 ± 0.004
f = π/90 ± 0
ζ = - π/2 ± 0

0

Figure A6: Measured absolute g-factors |g| (dots) in dependence of the angle of the ANC piezo rotator,
θ = 495◦−φ. The uncertainties are obtained from the fitting errors. A sine function y = y0+A·sin(f ·θ+ζ)
(black curve) is fitted through the data at a fixed frequency and phase, giving a periodicity of 180◦ and
a minimum at θ = 180◦. The red data points were measured in this thesis, and the purple data point
was measured during its writing process. The offset y0 is considered to be the absolute value of the mean
g-factor, ḡ = gbulk + δgi, such that δgi = 0.044 ± 0.003 is obtained. The amplitude A is taken as the
anisotropic variation, leading to δga = 0.025± 0.004.
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