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1 Vorwort

Bereits als Kind war ich von den Farben in der Natur, wie sie zum Beispiel bei Re-
genbögen, Schmetterlingen oder Blumen vorkommen, fasziniert. Mit dem Alter entwi-
ckelte sich diese Faszination zur Neugierde. Dabei interessierten mich vor allem die wis-
senschaftlichen Aspekte der Herkunft und Entstehung der Farben. Als wir im Unterricht
die Thematik der Lichtbrechung behandelten, wurde mir klar, dass es mehr als möglich
ist, meinem Interesse an den wissenschaftlichen Hintergründen der Farben nachzuge-
hen. Ein Besuch im Schmetterlingshaus auf der Insel Mainau, bestärke mich zusätzlich
in diesem Vorhaben. Um die Beziehung zwischen Licht, Winkel und allgemeiner Optik
nachzuvollziehen zu können, begann ich damit Literatur zu den vielfältigen Farben der
Schmetterlingsflügel zu lesen. Durch diese Recherche entdeckte ich die Vielschichtigkeit
und Tiefgründigkeit der Thematik. Dies brachte mich dazu, dieses Thema als meine
Maturaarbeit zu wählen.

Meine Fragestellung lautet daher wie folgt: Wie hängen die verschiedenen Farben der
Schmetterlingsflügel mit den Nanostrukturen der Schuppen und den Pigmenten zusam-
men?

Ich erhoffte mir dabei die bunte Welt an Flügeln auf eine physikalische Art und Weise
kennenzulernen und zudem die vorhandenen Theorien selbst anwenden und überprüfen
zu können.
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2 Einleitung

Unser Alltag ist von Farben geprägt. Besonders angezogen fühlen wir uns von schil-
lernden und gefärbten Schmetterlingen, die abhängig vom Blickwinkel andere Farben
aufweisen. Vor allem im Frühling und im Sommer kann man die Schmetterlinge in all
ihrer Pracht bewundern.

Der wissenschaftliche Name von Schmetterlingen ist Lepidoptera. Dieser stammt aus
dem Griechischen und bedeutet ”Schuppenflügler”. Schmetterlingsflügel haben eine ab-
wechslungsreiche Farbpalette, was oft hilft, ihre Art zu identifizieren. Aufgrund dieser
grossen Farbvielfalt wurden immense Untersuchungen durchgeführt, um die Herkunft
dieser Farben zu ermitteln. Die Flügelfarbe eines Schmetterlings ist aus zahlreichen
Gründen nützlich. Zum Beispiel hilft sie bei der Paarung, der Tarnung vor Feinden und
dient Anderen als Warnung für die drohende Gefahr [3].

In den letzten Jahrzehnten gab es enorme technologische Fortschritte bei der Bildver-
arbeitung und der Hochauflösungsmikroskopie. Ein aktuelles Beispiel ist der Nobelpreis
für Chemie 2017 für die Entwicklung der Kryo-Elektronenmikroskopie. Dies hat neue
Möglichkeiten eröffnet, die Strukturen im Nanometerbereich zu erkunden. Erst dies
ermöglicht die Analyse dieser Nanostrukturen auf einer wissenschaftlichen Art und Wei-
se. In der Vergangenheit waren es meist Vermutungen aufgrund der Messgrössen, die sie
zur Verfügung hatten. Ich habe die Möglichkeit bekommen, mit diesen Messinstrumen-
ten zu arbeiten und verschiedene Schmetterlinge zu vergleichen.

Die Farbe auf den Schmetterlingsflügeln ergibt sich entweder aus der Pigmentierung
(chemische Farbe) oder aus der Struktur (physikalische Farbe) der Flügelschuppen. Far-
ben wie Gelb, Schwarz, Rot und Braun werden vorwiegend durch Pigmente erzeugt.
Die Wechselwirkung von Licht und Strukturen in und an der Oberfläche von Schmetter-
lingsflügeln, häufig von der Grösse der Wellenlänge des Lichts, führt zu physikalischen
Farben [13] [7]. Diese Farben sind normalerweise hell und abhängig vom Betrachtungs-
winkel (Im Gegensatz zu chemischen Pigmenten, die Licht diffus streuen) [18] [16]. Die
hier produzierten Farben sind normalerweise golden, grün, violett und blau [17].

Aber woher kommen diese Farben und wieso schillern gewisse Arten mehr als andere?
Um diesem Problem auf den Grund zu gehen, habe ich mir folgende Leitfragen zusam-
mengestellt:

1. Wie hängen die verschiedenen Farben der Schmetterlingsflügel mit den Nanostruk-
turen der Schuppen und den Pigmenten zusammen?

2. Kann man anhand der Nanostruktur die Wellenlänge des reflektierten Lichts her-
ausfinden?

In dieser Arbeit konzentriere ich mich auf strukturellen Farben der Schmetterlinge und
studiere die Physik dahinter. Dies beinhaltet das Eintauchen in Bereiche wie Beugungs-
gitter, Streuung von Licht, Interferenz in Dünnschichten und mehrschichtige Interferenz.

Um eine grösstmögliche Vielfalt zu erleben, habe ich Schmetterlinge aus verschiedenen
Spezies für die Messungen ausgewählt. Mithilfe des Spektrometers konnte ich das vom
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Schmetterling reflektierte Licht messen. Die Hochauflösungsmikroskope wie das Lasermi-
kroskop und das Rasterelektronenmikroskop gaben mir die Möglichkeit, die detaillierten
Nanostrukturen des Flügels zu untersuchen. Zudem konnte ich mithilfe von vorhande-
nen physikalischen Modellen und MATLAB Simulationen (Maxwell Gleichungen) meine
Ergebnisse analysieren und auswerten.
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3 Theorie

3.1 Licht und Farben

Ohne Licht könnten wir nichts sehen. Damit unsere Augen Farben wahrnehmen können,
muss Licht auf Materie treffen und von dieser reflektiert, gestreut oder absorbiert wer-
den bzw. sich um das Objekt biegen oder beugen.

Licht ist eine elektromagnetischer Welle. Dabei benennt man als Licht typischerweise
die für das menschliche Auge sichtbare elektromagnetische Welle. Diese liegt in einem
Wellenlängenbereich von 380 bis 780 Nanometer. Die Physik und auch die Chemie be-
schreiben Licht über den Welle-Teilchen-Dualismus, wonach man dem Licht je nach Ex-
periment Eigenschaften einer Welle oder eines Teilchens, genannt Photon, zuschreibt.
Das Photon ist ein Teilchen, das sich im Vakuum mit der Lichtgeschwindigkeit von
c = 2.998× 108 m

s bewegt. Die Lichtgeschwindigkeit ist die grösste Naturkonstante.

Das für den Menschen sichtbare Spektrum (Licht)

Abbildung 3.1: Das elektromagnetische Spektrum und einige Eigenschaften der elektro-
magnetischen Strahlung in Abhängigkeit von Frequenz und Wellenlänge.

Im Zusammenhang mit Licht stehen folgende Phänomene:

1. Reflexion: Reflexion ist ein Phänomen, in welchem die Lichtwelle beim Auftreffen
auf eine Grenze zwischen zwei Medien die Richtung ändert und dadurch das erste
Medium nicht verlässt. Somit findet die Richtungsänderung an der Grenzfläche
zweier Medien statt.
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3.1 Licht und Farben

2. Brechung: Bei der Brechung ändert die Lichtwelle beim Übergang vom einen in
das andere Medium die Richtung. Es breitet sich daher nicht gradlinig aus, sondern
wird gebrochen.

3. Diffraktion/Strahlenbeugung: Trifft Licht auf eine scharfe Kante oder auf
einen schmalen Spalt, so breitet es sich nicht wie im Strahlenmodell gradlinig
aus, sondern wird an der Kante bzw. Spalt gebeugt, sodass es in Regionen wahr-
genommen werden kann, wo es eigentlich nicht hinkommen dürfte. Man kann dies
aber im Wellenmodell erklären.

4. Interferenz: Eine Welle hat Wellenberge und Wellentäler. Als Amplitude der
Welle bezeichnet man ihre maximale Auslenkung. Wenn mehrere Wellen mit ei-
ner Frequenz f und Wellenlänge λ aufeinandertreffen, dann entsteht Interferenz.
Interferenz ist der Überlagerung mehrerer Wellen, wobei die Amplituden der Wel-
len addiert werden. Das kann zu einer Verstärkung oder Abschwächung der Welle
führen [10].

Treffen Wellenberg und Wellental aufeinander, löschen sie sich aus (destruktive In-
terferenz). Treffen zwei Wellenberge oder zwei Wellentäler aufeinander, so entsteht
ein grösserer Wellenberg oder Tal (konstruktive Interferenz).

• Dünnschichtinterferenz: Die schimmernden Farben eines Ölfilms auf Was-
ser, oder bei Seifenblasen sind das Ergebnis des Wellencharakters von Licht.
Diese Form der Interferenz wird üblicherweise als Dünnfilminterferenz be-
zeichnet und ist das Ergebnis von konstruktiver oder destruktiver Inter-
ferenz. Damit dieses Phänomen auftritt, muss die Dicke des Films in der
Grössenordnung der Wellenlänge des Lichts liegen.

θa θa

θb

θa

d

na

nb

O

A

B

A′

Abbildung 3.2: Strahlengang bei der Dünnschichtinterferenz.

Bei konstruktiver Interferenz gilt die folgende Bedingung:

2nb d cos θb = mλ (3.1)

nb ist der Brechungsindex, d die Dicke des dünnen Films, θb ist der Brechungs
winkel, m ist eine ganze Zahl, die die Ordnung der Interferenz festlegt, und
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3.1 Licht und Farben

λ ist die Wellenlänge des Lichts.

Es ist wichtig anzumerken, dass, wenn Licht von einem Material mit einem
kleineren Brechungsindex auf das mit einem höheren einfällt, sich die Phase
der Welle um π ändert, während dies im gegenteiligen Fall nicht geschieht.

Die Differenz der Optischen Weglängen (∆L) für die beiden reflektierten Wel-
len wird berechnet durch:

∆L = nb
(
OB +BA′

)
− naOA (3.2)

∆L = 2nbd/ cos θb − 2nad tan θb sin θa (3.3)

∆L = 2nbd/ cos θb − 2nbd sin2 θb/ cos θb (3.4)

∆L = 2nb d cos θb (3.5)

∆L = 2nb d cos θb (3.6)

∆L = 2nb d

√
1− sin2 θb (3.7)

∆L = 2nb d

√
1−

(
na sin θa

nb

)2

(3.8)

∆L = 2 d

√
nb2 − (na sin θa)

2 (3.9)

• Mehrschichteninterferenz: Mehrschichteninterferenz ist ähnlich der Dünnschichtinterferenz,
jedoch mit mehreren Schichten [5].

Bei konstruktiver Interferenz gilt die folgende Bedingung:

2 (na da cos θa + nb db cos θb) = mλ (3.10)

die Brechungswinkel in den Schichten A und B heissen θa and θb. Die Dicken
der Schichten A und B werden mit da und db benannt.

5. Streuung: Die Streuung von Licht ist die Ablenkung eines Lichtstrahls von einem
geraden Weg aufgrund von Unregelmässigkeiten in dem Medium, Partikeln oder in
der Grenzfläche zwischen zwei Medien. Am bekanntesten ist die Rayleigh–Streuung
(Blau des Himmels).

6. Iridisieren/Schimmern: Man spricht von einer irisierenden oder schimmernden
Farbe, wenn sich diese in Abhängigkeit zum Blickwinkel des Betrachters und zum
Einfallswinkel des Lichtes verändert.

3.1.1 Strukturfarben

Strukturfarben werden auch physikalische Farben genannt. Sie entstehen aufgrund der
Dünnschichten- und Mehrschichteninterferenz der Lichtwellen von den Mikro- und Nano-
strukturen. Im Unterschied zur Entstehung der Pigmentfarben ist anstatt der Absorp-
tion die Reflexion und Beugungsinterferenz von Bedeutung. Diese Strukturen können
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3.2 Das Bohrsche Atomodell

simple solide, durchbohrte oder löchrige Mehrschichten sein. Zudem kommen auch ke-
gelförmige, eingelagerte oder gyroide Mikrostrukturen infrage [1].

Von unserem Auge wird diese überlagerte Lichtwelle als eine Farbe wahrgenommen.
Diese Strukturfarben werden mit der Zeit nicht verblassen, da sie nur mit der inne-
ren Struktur des Materials zusammenhängen. Ausserdem können sich die Farben mit
Betrachtungswinkel verändern. Die am häufigsten vorkommenden strukturbasierten Far-
ben sind blau, violett und grün.

In der Natur trifft man unzählige Lebewesen an, deren Farbintensität unteranderem auf
den Strukturfarben beruht. Die Organismen entwickeln sich seit Jahrmillionen weiter
und finden einen Weg die Geometrie der Mikro-und Nanostrukturen zu optimieren.

3.1.2 Pigmentfarben

Pigmentfarben werden auch chemische Farben genannt. Hierbei handelt es sich um teil-
chenförmige organische oder anorganische Feststoffe, die in der Regel unlöslich sind.
Diese sind in einen Träger eingebettet und werden davon nicht beeinflusst.

Pigmente und Farbstoffe erzeugen Farben durch selektive Absorption und Reflexion von
spezifischen Wellenlängen des Lichtspektrums. Die grüne Farbe in den Blättern durch
Chlorophyll ist ein Beispiel dafür.

3.2 Das Bohrsche Atomodell

Eine der grossen Fragen des frühen 20. Jahrhunderts war, den Grund für die Stabilität
der Elektronenbahnen um den Kern herum zu finden. Gemäss dem Rutherford-Modell,
dem vorherrschenden Atommodell dieser Zeit, das besagte, dass das Elektron ein ge-
ladenes Teilchen ist, sollte es Strahlung (elektromagnetisch) emittieren und nach dem
Verlust von Energie in den Kern fallen. Dieses Argument basiert auf der klassischen
Mechanik und der elektromagnetischen Theorie.

Um die Stabilität des Atoms zu beschreiben, schlug Neils Bohr ein quantisiertes Scha-
lenmodell vor. Nach diesem Modell bewegen sich Elektronen in konzentrischen Bahnen
fester Grösse und Energie um den Kern. Er argumentierte, dass die Bahnen der Elek-
tronen nur diskrete Werte haben können, was dann der Grund für diese feste Grösse
und Energie ist. Folglich kann jede Bahn mit einer Quantenzahl markiert werden [4].
Energie bewirkt, dass sich die Elektronen von einer Energieumlaufbahn in eine andere
Energieumlaufbahn bewegen.

Er hat sein Modell weiter konkretisiert, indem er definiert hat, wie viel Energie ein Elek-
tron benötigt, um die Umlaufbahnen zu wechseln. Um von einer höheren Energieumlauf-
bahn zu einer niedrigeren Energieumlaufbahn zu gelangen, muss ein Elektron Energie
abstrahlen, die dem Energieunterschied der beiden Umlaufbahnen entspricht. Ähnlich
muss ein Elektron, um von einer niedrigeren Energieumlaufbahn zu einer höheren Ener-
gieumlaufbahn zu gelangen, die Energie absorbieren, die dem Energieunterschied der bei-
den Umlaufbahnen entspricht. Für das Wasserstoffatom hat Bohr die Planck-Konstante
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3.3 Die Maxwell-Gleichungen

(die kleinste Naturkonstante) (h = 6.6 × 10−34 Joule Sekunden) verwendet, um auch
die Formeln für Energieniveaus darin zu definieren.

3.3 Die Maxwell-Gleichungen

Die Forschungsergebnisse, die nahelegen, dass Licht eine elektromagnetische Welle ist,
gehen bis ins 19. Jahrhundert zurück. Diese Arbeit wurde hauptsächlich von zwei Wis-
senschaftlern durchgeführt. Der erste war James Maxwell, ein schottischer Physiker und
Mathematiker, der die Existenz elektromagnetischer Wellen voraussagte. Seine Arbeit
wird von den bekannten Maxwell-Gleichungen zusammengefasst. Der andere war Hein-
rich Rudolf Hertz, ein deutscher Physiker, der an der Herkunft dieser Wellen arbeitete.
Er stellte die Hypothese auf, dass die Elektronenschwingung elektromagnetische Wellen
erzeugt [4] [5].

Abbildung 3.3: Elektromagnetische Wellen sind zusammengesetzte aus elektrischen und
magnetischen Feldern. Diese Abbildung zeigt eine linear in der Ebene polarisierte elek-
tromagnetische Welle, die sich in positive x-Richtung ausbreitet. Das elektrische Feld
ist in der vertikalen Ebene, die auch die y-Achse enthält, das magnetische Feld in der
horizontalen Ebene, die auch die z-Achse enthält. Die beiden Felder bilden einen rechten
Winkel zueinander [12].

Verschiedene Teilmengen des Spektrums dieser elektromagnetischen Strahlung wurden
separat definiert, da sich ihre physikalischen Eigenschaften teilweise stark unterschei-
den. Das sichtbare Licht hat Wellenlängen von 400 Nanometer bis 700 Nanometer. Das
Infrarotlicht bezieht sich auf die Teilmenge des Spektrums, die längere Wellenlängen
als das sichtbare Licht hat. Das ultraviolette Licht bezieht sich auf die Teilmenge des
Spektrums, das Wellenlängen kürzer als das sichtbare Licht hat.

Maxwell-Gleichungen für elektrische und magnetische Felder im Medium werden im
Allgemeinen wie folgt zusammengefasst:
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3.3 Die Maxwell-Gleichungen

∇ ·E =
ρ

ε0
(3.11)

∇ ·B = 0 (3.12)

∇×E = −∂B

∂t
(3.13)

∇×B = µ0

(
J + ε0

∂E

∂t

)
(3.14)

E, B und J sind elektrisches Feld, magnetische Flussdichte bzw. freie Stromdichte. ρ,
ε, ε0, µ und µ0 sind Ladungsdichte, Permittivität des Mediums, Permittivität des Va-
kuums, magnetische Permeabilität des Mediums bzw. magnetische Permeabilität des
Vakuums.

Im Falle von Licht sind J und ρ Null, d.h. es gibt keine Quellen, oder auch: Lichtwellen
breiten sich im Vakuum aus. Somit werden die obigen Gleichungen weiter reduziert auf:

∇ ·E = 0 (3.15)

∇ ·B = 0 (3.16)

∇×E = −∂B

∂t
(3.17)

∇×B = µ0 ε0
∂E

∂t
(3.18)

Die obigen Gleichungen können weiter zu zwei Gleichungen zusammengefasst werden.
Um sie zu reduzieren, führen wir zuerst ∇× vom linken Teil der Gl. 3.17 ein und setzen
dann Gl. 3.18 hinein:

∇× (∇×E) = − ∂

∂t
∇×B (3.19)

= −µ0 ε0
∂2E

∂t2
(3.20)

Unter Verwendung der folgenden Vektorbeziehung (d.h. Rot vom Rot):

∇× (∇×E) = ∇ (∇ ·E)−∇2E (3.21)

und der Gl. 3.15, erhalten wir eine partielle Differentialgleichung:

∇2E = µ0 ε0
∂2E

∂t2
(3.22)

In einer ähnlicher Weise erlangen wir unter der Verwendung von ∇× vom linken Teil
der Gl. 3.18 und dem Einfügen von der Gl. 3.17 folgende Beziehung:

∇× (∇×B) = −µ0 ε0
∂2B

∂t2
(3.23)
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3.4 Finite-Differenzen-Methode

Mit der Anwendung der gleichen Vektorrelation und Gl. 3.16 erhalten wir die vollständige
äquivalente Gleichung, die der magnetischen Flussdichte entspricht:

∇2B = µ0 ε0
∂2B

∂t2
(3.24)

Gl. 3.22 und Gl. 3.24 sind Partielle Differentialgleichungen (PDGs). Partiellen Differenti-
algleichungen haben im Allgemeinen keine trivialen Lösungen und werden in den meisten
Fällen nur numerisch gelöst. Wir werden kurz die numerische Technik besprechen, um
die Maxwell-Gleichungen zu lösen.

3.4 Finite-Differenzen-Methode

Im Rahmen meiner Arbeit modelliere ich Maxwell-Gleichungen, die durch Partielle Dif-
ferentialgleichungen beschrieben werden, die mit Ausnahme einiger Spezialfälle nicht
analytisch gelöst werden können. Daher verwende ich numerische Algorithmen, die einen
Standardlösungsweg bieten, welcher zahlreiche Schritte von einer korrekten mathemati-
schen Formulierung der Ausgangsfrage bis zur abschliessenden numerischen Simulation
umfasst. Der entscheidende Schritt ist die Diskretisierung des ursprünglichen mathema-
tischen Modells.

Im Kontext der numerischen Modellierung beschreibt die Diskretisierung einen Prozess
des Übertragens eines kontinuierlichen Modells in ein diskretes Gegenstück (d. h. For-
mulierung des Problems auf einer endlichen Anzahl von Punkten bei möglichst kleinem
Fehler). Mathematisch reduziert es die Differentialgleichung zu einem System algebrai-
scher Gleichungen, die dann auf einem Computer gelöst werden können. Theoretisch
können die erhaltenen numerischen Ergebnisse nicht von der exakten Lösung unter-
scheidbar sein (bei einem grossen Gleichungssystem aus kann man der exakten Lösung
beliebig nahe kommen). Praktisch wird alledings nur eine begrenzte (d.h. ziemlich klei-
ne) Anzahl von Zellen verwendet. Diskretisierung kann im Raum und / oder in der
Zeit durchgeführt werden. Die wichtigsten und am häufigsten angewandten Diskretisie-
rungsmethoden sind Finite–Differenzen–Methoden (FDM), Finite–Volumen–Methoden
(FVM) und Finite–Elemente–Methoden (FEM) [5].

Das FDM ist die beliebteste und das verhältnismässig einfachste Diskretisierungsmetho-
de [15]. Es ist abgeleitet von der Taylorreihe und ist eine einfache Anwendung der De-
finition der Ableitung. Das FDM konstruiert numerisch lösbare Differenzengleichungen
aus Differentialgleichungen, indem Näherungen durch Verhältnisse zwischen endlichen
Differenzen approximiert werden [6]. Daher kann die Methode sowohl auf die Maxwell–
Gleichungen der Zeit– als auch auf die Frequenzdomäne angewendet werden.

Bei einer Differenzialgleichung u(x) : R → R ist die Ableitung am Punkt x definiert
durch:

ux ≡
(
∂u

∂x

)
= lim

∆x→0

u (x+ ∆x)− u (x)

∆x
(3.25)
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3.4 Finite-Differenzen-Methode

Wenn ∆x klein aber endlich ist, ist der Ausdruck auf der rechten Seite eine Annäherung
an den exakten Wert von ux. Wenn wir nun den stetigen differenzierbaren Operator
durch den diskreten Differenzoperator ersetzen, erhalten wir:

[
du

dx

]i
r

=
u (xi+1)− (xi)

∆x
(3.26)

wobei xi+1 = xi+∆x der rechte benachbarte Gitterpunkt von xi ist. Der oben erwähnte
Differenzoperator wird oft als Vorwärtsdifferenz bezeichnet. In ähnlicher Weise können
wir andere Differenzoperatoren definieren. Zum Beispiel wird der Operator für die Rückwärtsdifferenz
angegeben:

[
du

dx

]i
l

=
u (xi)− (xi−1)

∆x
(3.27)

Der zentraler Differnzialoperator ist dann wie folgt:

[
du

dx

]i
c

=
u (xi+1)− (xi−1)

2∆x
(3.28)

Aufbauend auf der obigen Theorie verwenden wir die Finite Difference Time Domain
(FDTD), um die Maxwell–Gleichungen im kartesischen Koordinatensystem zu diskreti-
sieren. Die Maxwell-Gleichungen (d.h. Gl. 3.17 und Gl. 3.18) werden geschrieben als:

∂yEz − ∂zEy = −∂tBx (3.29)

∂zEx − ∂xEz = −∂tBy (3.30)

∂xEy − ∂yEx = −∂tBz (3.31)

und

∂yBz − ∂zBy = µ0 ε0 ∂tEx (3.32)

∂zBx − ∂xBz = µ0 ε0 ∂tEy (3.33)

∂xBy − ∂yBx = µ0 ε0 ∂tEz (3.34)

Um die Gl. Eqs. 3.29 – 3.34 numerisch nach der Finite-Differenzen-Methode approxi-
mieren wir jede partielle Ableitung durch ein Verhältnis zwischen Differenzen als [15]:

Ei,j+1,k
z − Ei,j,kz

∆j
y

− Ei,j,k+1
y − Ei,j,ky

∆k
z

= −B
n+1
x −Bn

x

∆t
(3.35)

Ei,j,k+1
x − Ei,j,kx

∆k
z

− Ei+1,j,k
z − Ei,j,kz

∆i
x

= −
Bn+1
y −Bn

y

∆t
(3.36)

Ei+1,j,k
y − Ei,j,ky

∆i
x

− Ei,j+1,k
x − Ei,j,kx

∆j
y

= −B
n+1
z −Bn

z

∆t
(3.37)

und
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3.4 Finite-Differenzen-Methode

Bi,j,k
z −Bi,j−1,k

z

∆j
y

− Bi,j,k
y −Bi,j,k−1

y

∆k
z

= µ0 ε0

(
En+1
x − Enx

∆t

)
(3.38)

Bi,j,k
x −Bi,j,k−1

x

∆k
z

− Bi,j,k
z −Bi−1,j,k

z

∆i
x

= µ0 ε0

(
En+1
y − Eny

∆t

)
(3.39)

Bi,j,k
y −Bi−1,j,k

y

∆i
x

− Bi,j,k
x −Bi,j−1,k

x

∆j
y

= µ0 ε0

(
En+1
z − Enz

∆t

)
(3.40)

Um die PDE zu lösen, müssen wir geeignete Anfangs- und Randbedingungen anwenden.
Für die Anfangsbedingungen gehen wir davon aus, dass die Simulation mit einer Punkt-
lichtquelle oder einer ebenen Wellenlichtquelle gestartet werden kann. Zusätzlich gibt
es in der Literatur zwei Haupttypen von Randbedingungen (i) periodische (Periodische
Randbedingung, PBC) und (ii) absorbierende (Perfekt abgestimmte Schicht, PML). Die
detaillierte Beschreibung dieser Randbedingungen ist jedoch nicht Teil dieser Arbeit [14]
[2] [19].
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4 Material und Methoden

Der Grund, warum ich Schmetterlinge für meine Forschung ausgewählt habe, ist, dass
sie eine erstaunliche Vielfalt und Auswahl an Farben bieten. Die Physik dahinter, bei-
spielsweise die Veränderung der Farbe mit dem Betrachtungswinkel (Interferenz), ist
faszinierend zu erforschen. Ein weiterer Grund ist, dass bei Schmetterlingen die Farben
sogar als totes Exemplar intakt bleiben, was meine Untersuchung erst möglich macht.

PAPILIONIDAE 
  

NYMPHALIDA 
  

Papilio Demoleus [2] 

Papilio Thoas 

Papilio Palinurus [2] 

Papilio Anchisiades 

Graphium Agamemnon 

Archeoprepona Demophon [1] 

Kallima Inachus [2] 

Caligo Atreus [2] 

Morpho Peleides 

Heliconius Sapho 

Euploea Core 

Morpho Telemachus 

Prepona Omphale [2] 

[1] Spektrometer Messungen 
 
[2] REM Messungen 

Abbildung 4.1: Die Schmetterlingsfamilien Papilionidae und Nymphalida.

Als erstes habe ich die 13 Schmetterlinge, die ich grosszügigerweise vom Papiliorama
[9] bekommen habe, analysiert und über sie recherchiert. Nach einer Liste mit Kriterien
habe ich fünf interessante Exemplare ausgewählt (unterstrichene Namen in der Abbil-
dung 4.1).

Die Kriterien lauten:

1. Die Farben sehen optisch sehr ansprechend aus, weil es klare farbliche Übergänge
auf den Flügeln gibt.

2. Der Verlauf dieser Farben trägt zu dem ersten Punkt bei (besonders bei Kallima
Inachus).
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3. Wenn ein Exemplar eine grosse Farbenvielfalt hat, ist es gut möglich, dass es
unterschiedliche Schuppen für jede Farbe besitzt.

4. Während des Fotografierens habe ich bemerkt, dass die Farben einiger ausgewählter
Schmetterlinge je nach Winkel anders erscheinen(winkelabhängig). Daher eignen
sie sich auch besonders für weitere Untersuchungen.

5. Ich habe verschiedene Spezies ausgewählt, um eine facettenreiche Vielfalt zu erle-
ben.

Die ausgewählten Schmetterlinge sind:

Caligo Atreus
Spezies: Caligo
Familie: Nymphalidae
Flügelspannweite: 14− 16 cm
Lebensraum: von Mexiko bis Peru
Besonderes: Die Vorderflügel sind blau-violett, während die Hinterflügel ein grosses,
gelbes Band zeigen. Wie alle Arten der Gattung Caligo sind auf der Flügelunterseite
zwei grosse Augenflecken auf den Hinterflügeln zu sehen.

Kallima Inachus
Spezies: Kallima
Familie: Nymphalidae
Flügelspannweite: 9− 12 cm
Lebensraum: Indien, Thailand, Laos Malaysien, Vietnam, China und Japan
Besonderes: Er ist sehr gut getarnt, da seine Unterseite eine hellbraune Äderung mit
einem weissen Schimmelfleck auf dem Vorderflügel aufweist und er damit aussieht wie
ein welkes Blatt.

Papilio Demoleus
Spezies: Papilio
Familie: Papilionidae
Flügelspannweite: 8− 9 cm
Lebensraum: Indien, Malaysia Borneo, Kalimantan, Brunei, Karibik und Zentralame-
rika
Besonderes: Papilio demoleus ist eine häufige und weit verbreitete Schwalbenschwanz
Schmetterling. Auch Schmetterling des Todes genannt.

Papilio Palinurus
Spezies: Papilio
Familie: Papilionidae
Flügelspannweite: 8− 10 cm
Lebensraum: Südostasien (z.B. Malaysia, Indonesien, Philippinen)
Besonderes: Papilio palinurus ist einer der wenigen grünen Schmetterlinge. Vom einen
Winkel erscheint er grün, vom anderen aber türkis-blau [9].

Prepona Omphale
Spezies: Prepona
Familie: Nymphalidae
Flügelspannweite: 9 cm

14



4.1 Spektrometer

Lebensraum: Zentral und Südamerika
Besonderes: Papilio demoleus ist ein weit verbreiteter Schwalbenschwanz Schmetter-
ling. Auch Schmetterling des Todes genannt.

Um die Nanostrukturen (1nm = 10−9m) der Schmetterlinge zu analysieren und dadurch
die Frage nach den Farben beantworten zu können, habe ich folgende Messinstrumente
verwendet:

1. Spektrometer

2. Lasermikroskop

3. Rasterelektronenmikroskop

4.1 Spektrometer

Mit einem Spektrometer ist es möglich, die Lichtintensität in Abhängigkeit der Wel-
lenlänge zu messen. In meinem Fall konnte ich das vom Schmetterlingsflügel reflektierte
Licht messen. Es ist auch möglich z.B. ultraviolettes Licht (ca. 100 nm) oder infrarotes
Licht (ca. 1 µm – 1 cm) zu messen. Diese Werte waren für mein Experiment jedoch
nicht relevant, weshalb ich mich auf das sichtbare Licht beschränkt haben.

In einem ersten Schritt habe ich das Instrument mit weissem bzw. schwarzem Papier
kalibriert. Dann befestigte ich den Flügel an einer Gleitplatte. Indem ich mit Stellschrau-
ben die Platte in x– und y– Richtung bewegen konnten, war es möglich ein festgelegtes
Raster gezielt zu vermessen. Auf dieser Platte habe ich den Schmetterling auf einem
schwarzen Hintergrund befestigt, da sonst das vom Hintergrund reflektierte Licht die
Messungen verfälscht hätte.

Dieses Vorgehen habe ich vorgängig an einer Farbmatrix ausprobiert. Die dadurch er-
haltenen Dateien habe ich mit dem Programm MATLAB ausgewertet.
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4.1 Spektrometer

Abbildung 4.2: Spektrometer zur Aufnahme und Messung von Spektren.

Für meine ersten Messungen habe ich diverse Schmetterlingsflügel vermessen. Dabei ha-
be ich das Spektrometer einfach von Hand über den jeweiligen Flügel bewegt und mir die
vielfältigen Wellenlängen der einzelnen Farben angeschaut. Diese Methode war sehr un-
genau, weshalb ich mir lange Gedanken über eine andere Vorgehensweise gemacht haben.

Schliesslich kam ich auf die Idee, den Flügel auf einer verschiebbaren Platte zu befes-
tigen. Indem ich mit Stellschrauben die Platte in x- und y-Richtung bewegen konnte,
war es möglich ein festgelegtes Raster gezielt zu vermessen. Auf dieser Platte habe ich
den Schmetterling auf einem schwarzen Hintergrund befestigt, da ansonsten das vom
Hintergrund reflektiert Licht die Messungen verfälscht hätte.

Dieses Vorgehen habe ich zuerst an einer Farbmatrix (vgl. Abb 4.3) ausprobiert, um
zu sehen, ob das Verfahren funktioniert. Ich wollte auch überprüfen, wie genau das
Spektrometer die unterschiedlichen Farben messen kann. Die Farbmatrix wurde mit
einem CMYB-Drucker ausgedruckt, d.h. rot, grün, blau waren Mischfarben.
Danach habe ich den Schmetterlingsflügel mit dem Spektrometer untersucht. Dazu habe
ich ein Raster über den Flügel gelegt, das 18 auf 18 Häuschen gross ist. Jedes quadrati-
sche Häuschen hat eine Kantenlänge von 1, 5 mm (siehe Abbildung 4.4). Anschliessend
habe ich jedes der Kästchen mit dem Spektrometer vermessen, um zu sehen, ob es in-
nerhalb der einzelnen Farben Unterschiede im reflektierten Licht gibt.
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4.2 Lasermikroskop

Farbmatrix Farbcodes in CMY-Format

(1,0,0) (0,1,0) (0,0,1)

(1,0,1) (0,1,1) (1,1,0)

k=1 k=0.8 k=0.6

Abbildung 4.3: Farbmatrix zur Überprüfung des Spektrometers.

Abbildung 4.4: Messplan zur Vermessung eines Flügels mit dem Spektrometer.

Bevor ich weitere Messungen durchführte, wollte ich mir erst einmal die Struktur anse-
hen. Dazu habe ich das Lasermikroskop verwendet.

4.2 Lasermikroskop

Bei einem Lasermikroskop wird das Präparat mit einem fokussiertem Laserstrahl abge-
rastert. Das Scannen eines fokussierten Laserstrahls ermöglicht die Erfassung digitaler
Bilder mit sehr hoher Auflösung.

Der Laser fährt von der höchsten Stelle des Objekts zur tiefsten und macht von jeder
Schicht ein Bild. Diese Bilder werden anschliessend zusammengefügt. So entsteht ein
Bild des Objekts, das die verschiedenen Strukturen und dessen Höhenprofil zeigt. Aus-
serdem macht es optische Bilder. Es verwendet eine Zweiwege-Lichtquelle, die aus einer
Laserlichtquelle und einer Weiss Lichtquelle besteht. Die zwei Lichtquellen liefern zu-
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4.2 Lasermikroskop

sammen die Farben, die Laserintensität und die Höheninformation, die notwendig sind,
um tiefe Feldfarbbilder, Laserintensitätsbilder oder Höhenbilder zu erzeugen.

Bei meinem nächsten Besuch in der Universität habe ich mit den fünf ausgewählten
Schmetterlingen Messungen unter dem Lasermikroskop durchführt. Während der Mes-
sungen habe ich die Schmetterlinge fotografiert und ihre Messposition aufgezeigt.

Abbildung 4.5: Das Lasermikroskop im Labor.

Als erstes habe ich ein Überblicksbild des Schmetterlings erstellt. Danach habe ich gute
Stellen (Zum Beispiel Stellen, an denen der Schmetterling keine Verletzungen aufwies
oder nicht allzu viele Schuppen abgefallen waren) ausgesucht und mich in diesen Stellen
vertieft.
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4.3 Rasterelektronenmikroskop

Abbildung 4.6: Überblicksbild aufgenommen mit dem Lasermikroskop.

a. b.

Abbildung 4.7: VK Software Analyzer.

Es war wichtig, einen ersten Überblick über die Struktur in den unterschiedlichen Be-
reichen zu bekommen. Das war eine Voraussetzung für die REM Messungen, denn um
am REM Messungen durchzuführen, braucht man eine 1 cm × 1 cm Probe, die zuerst
mit einer Goldschicht besputtert werden musste. Ich musste also genau wissen, welche
Stelle ich untersuchen wollte.

4.3 Rasterelektronenmikroskop

Beim Rasterelektronenmikroskop (kurz REM) wird ein Elektronenstrahl über das zu
vergrössernde Objekt gerastert. Die Art, wie die Elektronen reflektiert werden, wird am
Computer übersetzt und erzeugt so ein Bild der Oberflächenstruktur der Probe 4.8 c.

Mit dem REM ist es nicht möglich Proben, die grösser als 1 cm2 sind, zu untersuchen.
Deshalb muss man zuerst aus dem zu untersuchenden Objekt eine entsprechende Probe
ausschneiden 4.8 a.

Damit sich die Probe nicht auflädt und dadurch verändert, wird sie zuerst mit Gold
gesputet. Das bedeutet, dass sie in einem speziellen Gerät mit einer Schicht Gold oder
Platin überzogen wird. Diese Schicht ist nur wenige Nanometer dick 4.8 b.
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4.4 Alkohol Experiment

a. b.

c.

Abbildung 4.8: Das REM in der Universität Basel.

4.4 Alkohol Experiment

Um zwischen Strukturfarben und Pigmentfarben unterscheiden zu können, habe ich
verschiede Schmetterlinge mit Ethanol besprüht. Ich habe Ethanol verwendet, weil es
durchsichtig ist und schnell verdunstet, damit die Schmetterlinge zum Schluss wieder
ihre ursprünglichen Farben annehmen. Die Idee dahinter war, dass das Ethanol die Zwi-
schenräume der Nanostrukturen füllt und dadurch nur die Pigmentfarben zum Vorschein
kommen.

4.5 MATLAB Simulationen

Ich habe numerische Simulationen verwendet, um die Lösung der Maxwell-Gleichungen
zu berechnen. Eine numerische Simulation ist eine wissenschaftliche Technik, die ein phy-
sikalisches System mit einem regelnden mathematischen Modell beschreibt und es auf
einem Computer löst. Die mathematischen Gleichungen können nicht analytisch gelöst
werden und werden numerisch (auf einem Computer) gelöst. Numerische Simulationen
werden nun als dritte Säule der Wissenschaft bezeichnet und tragen sowohl zur Theo-
rie als auch zu den Experimenten bei. Numerische Simulationen ergänzen Experimente,
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4.5 MATLAB Simulationen

wodurch Zeit, Kosten und Risiko von Experimenten reduziert werden.

Maxwell FDTD ist ein MATLAB-basiertes FDTD-Toolbox mit Maxwell-Gleichungen.
Es löst die Gleichungen durch die FDTD Methode (Finite-Difference-Time-Domain) und
erfordert MATLAB R2011a [11].
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5 Resultate und Diskussion

5.1 Spektrometer

Die bei meinen Messungen erhaltenen Resultate (hinsichtlich der Reflexion) habe ich
mittels MATLAB visuell dargestellt. In den Grafiken 5.2, 5.3 und 5.4 sieht man, dass die
türkisfarbenen Teile des Schmetterlings blaues, grünes und braunes Licht reflektieren.
Der schwarze Teil dagegen reflektiert kaum bis gar kein Licht, weshalb ich hier auch kei-
ne Graphik eingeführt habe. Der Grad der Reflexion (in Prozent) wurde mit Gleichung
5.1 berechnet.

Abbildung 5.1: Die unterschiedlichen Wellenlängen des Lichtes, die von den unterschied-
lichen Positionen der Farbmatrix (Abb. 4.3) ausgesandt werden.

Abbildung 5.2: Reflektiertes Licht der türkis-blauen Fläche des Schmetterlings
Archeoprepona Demophon (Blauanteil).
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5.2 Lasermikroskop

Abbildung 5.3: Reflektiertes Licht der türkis-blauen Fläche des Schmetterlings
Archeoprepona Demophon (Grünanteil).

Abbildung 5.4: Reflektiertes Licht der türkis-blauen Fläche des Schmetterlings
Archeoprepona Demophon (Braunanteil).

R =
m(sample)−m(dark)

m(ref)−m(dark)
(5.1)

Wie man bei den Abbildungen 5.2, 5.3 und 5.4 sehen kann, sind verschiedene Farben
zuständig für die Farbgebung der Schmetterlingsflügel von Archeoprepona Demophon.
Schlussendlich erzeugen sie die Mischfarbe, die unsere Augen sehen. Die Farben Grün
und Blau sind ca. gleich intensiv, wobei Braun auch vorkommt.

5.2 Lasermikroskop

Meine Lasermikroskop Messungen habe ich an der Universität Basel durchgeführt. Dort
habe ich alles bei der VK Software eingestellt. Danach suchte ich die essentiell wichtigen
Stellen und die Übergänge zwischen zwei Farben heraus, damit ich diese dann verglei-
chen konnte. Den strukturellen Unterschied hatte ich bei den Spektralmessungen schon
gesehen, wo die Farbe entweder absorbiert oder in verschiedenen Spektralen Tönen re-
flektiert wurde. Die Abbildungen 5.5 - 5.7 zeigen den allgemeinen Datensatz, den ich
bei dem Lasermikroskop herausbekomme:
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5.3 Rasterelektronenmikroskop

Mit dem Lasermikroskop konnte ich Struktur und Höhe mit der Farbe korellieren.

Abbildung 5.5: Flügel (Ar-
cheoprepona Demophon)
optisch mit dem Lasermi-
kroskop aufgenommen.

Abbildung 5.6: Flügel
(Archeoprepona Demo-
phon) mit dem Lasermi-
kroskop aufgenommen,
Überlagerung des Laser
und des optischen Bildes.

Abbildung 5.7: Höhenbild
des Flügels (Archeopre-
pona Demophon) mit
dem Lasermikroskop
aufgenommen.

Die verschieden farbigen Schuppen zeigen viele Unterschiede. Die blauen Schuppen wei-
sen an der Spitze eine Einkerbung auf, während die schwarzen mehrere dieser Einker-
bungen haben, die deutlich stärker ausgeprägt sind. Die schwarzen Schuppen sind fast
schon zackig. Auch liegen die blauen Schuppen flach am Flügel und sehen sich alle sehr
ähnlich, bei den schwarzen hingegen gibt es zwei unterschiedliche Arten. Jede zweite
Schuppe ist etwas breiter und liegt flach an, die anderen sind schmaler und stellen sich
leicht auf (siehe Abbildung 5.5, 5.6 und 5.7). Die Distanz zwischen den Rillen der blauen
Schuppen ist deutlich kleiner als die der Rillen der schwarzen Schuppen.

5.3 Rasterelektronenmikroskop

Die durchsichtigen und blauen Schuppen des Schmetterlings Caligo Atreus sehen sich
sehr ähnlich, auch bei den Nanostrukturen 5.8. Der einzige Unterschied besteht darin,
dass die blauen Schuppen einige gefüllte Hohlräume haben. Ich vermute, dass diese Pig-
mente beinhalten, da die Nanostrukturen der beiden Farben fast identisch sind. Diese
Pigmente sind im Chitin der Schuppe gelagert.

Die Präsenz der schwarzen Schuppen des Schmetterlings Papilio Demoleus bezeugt,
dass alle Wellenlängen des sichtbaren Lichts absorbiert werden 5.10. Die gelöcherte Na-
nostruktur der schwarzen Schuppen kann somit als Lichtabsorber betrachtet werden.
Dabei spielen die Grösse des Lochs, die Dicke der Lochwand und die Tiefe des Lochs
eine wichtige Rolle.
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5.3 Rasterelektronenmikroskop
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5.3 Rasterelektronenmikroskop
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5.3 Rasterelektronenmikroskop
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5.3 Rasterelektronenmikroskop
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5.3 Rasterelektronenmikroskop

CALIGO ATREUS (BLAU) 

CALIGO ATREUS (ORANGE) 

Abstand Rillen Höhe 

Abstand Rillen Höhe 

Abbildung 5.12: Messung (rote Linien) des Durschnittsabstandes zwischen zwei Rillen
und der Durchschnittshöhe der Lamellen für den Schmetterling Caligo Atreus.
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5.3 Rasterelektronenmikroskop

KALLIMA INACHUS (BLAU) 

KALLIMA INACHUS (ORANGE) 

Abstand Rillen Höhe 

Abstand Rillen Höhe 

Abbildung 5.13: Messung (rote Linien) des Durschnittsabstandes zwischen zwei Rillen
und der Durchschnittshöhe der Lamellen für den Schmetterling Kallima Inachus.
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5.3 Rasterelektronenmikroskop

PAPILIO DEMOLEUS (BLAU) 

PAPILIO DEMOLEUS (ROT) 

Abstand Rillen Abstand Rillen 

Abstand Rillen Höhe 

PAPILIO DEMOLEUS (SCHWARZ) 

Abbildung 5.14: Messung (rote Linien) des Durschnittsabstandes zwischen zwei Rillen
und der Durchschnittshöhe der Lamellen für den Schmetterling Papilio Demoleus.
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5.3 Rasterelektronenmikroskop

PAPILIO PALINURUS (GRÜN) 

Abstand Rillen Höhe 

PAPILIO PALINURUS (GRÜN) 

Abbildung 5.15: Messung (rote Linien) des Durschnittsabstandes zwischen zwei Rillen
und der Durchschnittshöhe der Lamellen für den Schmetterling Papilio Palinurus.
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5.3 Rasterelektronenmikroskop

PREPONA OMPHALE (DUNKELBLAU) 

Abstand Rillen Höhe 

PREPONA OMPHALE (HELLBLAU) 

Abstand Rillen Höhe 

PREPONA OMPHALE (SCHWARZ) 

Abstand Rillen Höhe 

Abbildung 5.16: Messung (rote Linien) des Durschnittsabstandes zwischen zwei Rillen
und der Durchschnittshöhe der Lamellen für den Schmetterling Prepona Omphale.
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5.3 Rasterelektronenmikroskop

Name Abstand Breite gefüllte Wellenlänge (nm)

Rillen (µm) (nm) Zwischenräume (Lamellen)

Caligo Atreus (Blau) 1.10 92 70% 558

Caligo Atreus (Durchsichtig) 1.77 57 - 347

Kallima Inachus (Orange) 1.64 - -

Kallima Inachus (Blau) 1.31 - 15%

Papilio Demoleus (Rot) 1.61 - 90%

Papilio Demoleus (Blau) 1.70 - 100%

Papilio Demoleus (Schwarz) 1.37 - 10%

Papilio Palinurus (Grün) 0.13 - 10%

Prepona Omphale (Hellblau) 0.60 78 - 478

Prepona Omphale (Dunkelblau) 0.76 89 - 547

Prepona Omphale (Braun) 1.18 110 - 673

Tabelle 5.1: Die verschiedenen Messungen der Schmetterlinge, welche ich mit Gwyddion.
[8] durchgeführt habe. Die Wellenlängen habe ich mit der Gleichung 3.1 berechnet.

5.3.1 Tannenbaumstruktur: Interferenz

Die meisten Schuppen der Ordnung Lepidoptera weisen Längsrillen auf, die üblicherweise
2 bis 3 µm hoch sind. Der Abstand zwischen ihnen ist sehr klein (ca. zwischen 0.5 - 1.8
µm, siehe Tabelle 5.1). Die Rillen besitzen mehrere gestapelte Schichten, die Lamellen
genannt werden. Bei Betrachtung der Querschnittsansicht (REM) der Rillen der Schmet-
terlingsart Prepona omphale wird die tannenbaumartige Struktur ersichtlich (Abb. 5.19
b).

An den Grenzflächen der Lamellen wird das Licht entweder reflektiert, gebrochen oder
absorbiert. Die Dicke der einzelnen Lamellen bestimmt einerseits welche Wellenlängen
reflektiert werden und andererseits welche bei einem bestimmten Betrachtungswinkel
interferieren. Bei diesem Phänomen spricht man von Dünnschichtinterferenzen bei meh-
reren Schichten (Abb. 5.19 c).

Die Gesamtstruktur (Rillen und Lamellen) fängt das eingestrahlte Licht ein. Das Licht
prallt an den Lamellen ab, bis es im Einfallswinkel wieder reflektiert wird (Abb. 5.19
a). Diese Art von Struktur kann bis 80% des Lichtes reflektieren.

Das Faszinierende an dieser Art von Schmetterlingen ist, dass es zudem Schimmern ver-
ursachen kann, das winkelabhängig ist.

n1

n2

a b c

Abbildung 5.19: Tannenbaumstruktur Interferenz (Rillen und Lamellen).
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5.3 Rasterelektronenmikroskop

5.3.2 Grubenstruktur: Phänomen

Die Farbe der Schmetterlingsart Papilio palinurus ändert sich abhängig vom Betrach-
tungswinkel von grün zu türkisblau.

Deren Schuppen haben viele konkave Gruben, die einen Durchmesser von 4 − 6 µm
haben (Abb. 5.20 a-b). Unterhalb diesen Gruben befinden sich mehrere gekrümmte
Schichten. Der flache Bereich (Mitte der Grube) trägt zur gelben Farbe bei und der ge-
neigte Bereich (Seiten) trägt zur blauen Farbe bei. Sobald weisses Licht auf die genannte
Struktur fällt, wird das gelbe Licht selektiv von dem unteren Ende der Kurve reflektiert.
Das blaue Licht trifft auf die Seiten der Kurve, wird reflektiert und trifft erneut auf die
gegenüberliegende Seite der Kurvenwand, wo sie in umgekehrter Richtung reflektiert
wird. Das restliche Licht wird wahrscheinlich absorbiert.

Wie beschrieben werden nur gelbe und blaue Farben selektiv reflektiert. Erst deren
Kombination ergibt in unseren Augen die Farbe Grün. Die Änderung des Winkels führt
zu einer anderen Kombination von Blau und Gelb (Abb. 5.20 c). So sehen wir türkis-blau.

a b c

Abbildung 5.20: Grubenstruktur Phönomen (Grube).
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5.4 Alkohol Experiment

5.4 Alkohol Experiment

Als ich den Schmetterlingsflügel mit Alkohol aufgefüllt hatte, war es mir möglich, nur
die Pigmentfarben zu erkennen. Der Grund hierfür liegt darin, dass das Alkohol die Na-
nostrukturen auffüllt und dadurch keine Reflektionen und keine Interferenz stattfinden
kann (Abb. 5.21 [1,4,5]).

Bei Schmetterlingen, bei denen man ohnehin nicht wegen der Strukturfarben die Farbe
sah (sondern durch Pigmente im Chitin) blieben fast unverändert (Abb. 5.21 [2,3]).

VORHER NACHHER 

1a 1b 

2a 2b 

3a 3b 

4a 4b 

5a 5b 

maximale  
Auswirkung  

minimale  
Auswirkung  

Abbildung 5.21: Der Vergleich von Schmetterling mit und ohne Alkohol auf ihren
Flügeln.
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5.5 MATLAB Simulationen

Um das Ergebnis der optischen Antwort theoretisch zu bestätigen, führte ich die mathe-
matische Modellierung der Maxwell-Gleichungen (Gl. 3.15 – 3.18) für das Einzelbaum
(T1) und das Zwei Bäume (T2) Modell durch (Abbildung 5.22) [2]. Sowohl T1 als auch
T2 Modelle sind vereinfachte 2D-Darstellungen von tannenbaumartigen Mehrschicht-
strukturen, die auf dem Schmetterling Prepona Ompahle (wie unter dem Rasterelek-
tronenmikroskop beobachtet) vorhanden sind. Die Schuppen der Schmetterlinge werden
grösstenteils aus Chitin gebildet, dessen Brechungsindex 1,53 beträgt. Für meine Modelle
wird SiO2 verwendet, da der Brechungsindex 1,55 beträgt und dessen Materialinforma-
tionen in der Literatur vorhanden sind.

Ich führte Simulationen mit zwei verschiedenen Wellenlängen von Licht, 400 nm und
700 nm durch. Bei ersteren dominiert die blaue Farbe, bei letzterer dominiert die rote
Farbe. Für die Simulation fällt eine planare Welle mit einer Wellenlänge von 400 nm
und 700 nm von der Oberseite des Modells ein. Das Modell ist −1000 nm bis +1000
nm in der x-Richtung und in der y-Richtung hat es eine Höhe von 2500 nm. Die PML-
Randbedingung (Perfectly Matched Layer) wird auf alle vier Seiten des kartesischen
Koordinatensystems angewendet. Die Simulation kann eine stationäre Lösung erreichen.

Abbildung 5.22: Die 2D baumartigen T1 (Mitte) und T2 (rechts) Strukturen.

Die Ergebnisse für die T1 Struktur sind in Abbildung 5.23 angegeben, wobei die obere
Abbildung das elektrische Feld in x–Richtung und die untere Abbildung das elektrische
Feld in y–Richtung zeigt. Abbildung 5.24 zeigt die magnetische Feldstärke für die T1
Struktur. In ähnlicher Weise sind die Ergebnisse für die T2 Struktur in Abbildung 5.25
angegeben. Ich habe festgestellt, dass das elektrische Feld stärker ist als das Magnetfeld.
Deshalb habe ich mich in meiner Arbeit auf das elektrische Feld konzentriert.
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400 nm 

Ex 

Ey 

700 nm 

Ex 

Ey 

Abbildung 5.23: Ex und Ey für die T1–Struktur bei 400 nm und 700 nm Wellenlängen.

400 nm 700 nm 

H H 

Abbildung 5.24: H für die T1–Struktur bei 400 nm und 700 nm Wellenlängen.
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400 nm 

Ex 

Ey 

700 nm 

Ex 

Ey 

Abbildung 5.25: Ex und Ey für die T2–Struktur bei 400 nm und 700 nm Wellenlängen.

400 nm 700 nm 

H H 

Abbildung 5.26: H für die T2–Struktur bei 400 nm und 700 nm Wellenlängen.

Wenn wir das elektrische Feld in der y–Richtung der T1 Struktur beobachten (untere
Diagramme in Abbildung 5.23), dominiert die blaue Farbe genau dort, wo die Struk-
tur existiert. Dies unterstützt, dass das elektrische Feld am und um die Struktur am
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stärksten ist. Ich habe diese durch grüne Ellipsen in Abbildung 5.27 hervorgehoben.

400 nm 

Ex 

Ey 

700 nm 

Ex 

Ey 

Abbildung 5.27: Vergleich von Ey für die T1–Struktur mit 400 nm und 700 nm Wel-
lenlängen.

Aus dieser Rechnung stelle ich die Hypothese auf, dass die Strukturen Variationen
in elektrischen und magnetischen Feldern erzeugen, die möglicherweise zu Interferenz
führen können. Ein ähnliches Verhalten wird für die T2 Strukturen beobachtet. Siehe
das elektrische Feld in der y–Richtung der T2 Struktur (untere Diagramme in Abbil-
dung 5.25) sowie die hervorgehobenen Abbildungen mit starkem elektrischem Feld 5.28).
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400 nm 

Ex 

Ey 

700 nm 

Ex 

Ey 

Abbildung 5.28: Vergleich von Ey für die T2–Struktur mit 400 nm und 700 nm Wel-
lenlängen.
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5.6 Diskussion

Die Schmetterlingsflügel besitzen eine komplexe Nanostruktur, die verschiedene optische
Phänomene verursachen kann (z.B Dünnfilminterferenz, mehrschichtige Interferenz, Bre-
chung, Reflexion usw.).

Diese Komplexität versuchte ich mit den folgenden Ansätzen zu studieren und zu erfor-
schen:

1. Dünnfilminterferenz

2. Alkohol-Experiment

3. Simulationen

Für die Dünnfilminterferenz analysierte ich die Nanostruktur mithilfe des Lasermikro-
skops und des REMs, wobei zwei Hauptstrukturtypen zu unterscheiden waren. Es gab
die tannenbaumartige Struktur und die Grubenstruktur. Anschliessend fand ich durch
die Berechnung der Breite der Lamellen heraus, dass die Wellenlänge des von der Baum-
struktur emittierten Lichtes der Wellenlänge von blau am nächsten war. Dies bestätigt
meine erste Vermutung, dass die Farben in der tannenbaumartigen Struktur durch mehr-
schichtige Interferenz an dünnen Schichten gebildet werden.

In der Grubenstruktur waren keine Lamellen sichtbar. Meine Vermutung war, dass die
von den Augen wahrgenommene Farbe eine Kombination aus anderen Farben ist, die
von den Seiten und der Mitte der schüsselförmigen Struktur kommen. Zudem verwarf
ich aber den Gedanken nicht, dass die Farben ein Ergebnis von den Pigmenten oder den
Nanostrukturen sein könnten. Ich habe mehrere Schichten im Querschnitt der Schup-
pe der Schmetterlingsart Papilio palinurus beobachtet. Somit könnte die Farbe durch
Dünnschichtinterferenz an mehreren Schichten entstehen. Ausserdem ändert sich die Far-
be in Abhängigkeit des Betrachtungswinkels von blau zu grün. Es ist anzunehmen, dass
das Licht aufgrund der Schalenform nicht den Boden der Kurve (pigmentierte Fläche)
trifft und somit Blau entsteht. Wenn sich aber die Annahme der Existenz von Pigmenten
als falsch herausstellt, so wird die Dünnschichthypothese bekräftigt. Die Durchführung
von weiteren Untersuchungen ist möglich.

Die zweite Hypothese besagte, dass durch das Einfüllen von farblosem Alkohol mit einem
ähnlichen Brechungsindex wie Chitin (1, 53) die Pigmente unverändert bleiben würden,
trotz des Auffüllens der Strukturteile. Der Alkohol verdampfte nach einigen Minuten
und der Schmetterling gewann seine ursprünglichen Farben wieder. Die aufgestellte Hy-
pothese wurde durch die erarbeiteten Ergebnisse (Abb. 5.21) unterstützt.

Um die beiden oben genannten Hypothesen weiter zu untersuchen und um die Struk-
turen, welche nicht durch die Theorie der reinen Lamelleninterferenz erklärt werden
können, besser nachzuvollziehen, führte ich Simulationen durch. Dabei handelt es sich
um einen weiteren Schritt, der die Theorie des Lichtes in der Nanostruktur verdeutlichen
soll. Die Simulationsergebnisse ergaben eine Übereinstimmung der Regionen, in welchen
die elektrischen und magnetischen Felder am stärksten vertreten waren, mit den Struk-
turen des Einfachbaums (T1) und des Doppelbaums (T2) (Abb. 5.22). Um die Rolle der
Simulation weiter zu überprüfen, sollte man es mit den Grubenstrukturen untersuchen.
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5.6 Diskussion

Meine Arbeit hat es mir ermöglicht, tiefere Einblicke in die Physik zu gewinnen und
meine Leitfragen teilweise zu beantworten.

Die weiteren zu diskutierenden Fragen sind:

1. Entstehen die Farben in den Grubenstrukturen wie bei der Schmetterlingsart Pa-
pilio palinurus durch Pigmentierung oder durch Dünnschichtinterferenz. Kommt
eine Kombination aus beidem infrage?

2. Können Dünnschicht- und Mehrschichteninterferenz allein die Farbphänomene in
Schmetterlingen erzeugen?

3. Können die Maxwell-Gleichungen die Physik hinter den Farbphänomenen beschrei-
ben?

4. Was ist die Beziehung zwischen dem elektrischen Feld, dem magnetischen Feld und
der Wellenlänge?

5. Erlauben uns 3D-Simulationen bessere Einblicke, um die Farbphänomene zu ver-
stehen?
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6 Zusammenfassung und Nachwort

In dieser Arbeit untersuchte ich die wissenschaftlichen Gründe für die Färbung der
Schmetterlingsflügel, wobei mein Fokus auf den Strukturfarben lag.

In einem ersten Schritt analysierte ich das von den Schmetterlingsflügeln reflektierte
Licht mit einem Spektrometer. Ich realisierte, dass weitere Untersuchungen erforderlich
waren, um den Ursprung der verschieden gefärbten Schmetterlingsflügel nachzuvollzie-
hen. Um den Zusammenhang zwischen der Farbe und der Struktur herauszufinden, be-
schloss ich, die verschiedenen Flügel mit einem Lasermikroskop und einem Rasterelektro-
nenmikroskop zu untersuchen. Diese Untersuchungen ermöglichten mir, einen Einblick
in die starren Strukturen der Flügel zu gewinnen und zusätzlich zeigte eine genauere
Betrachtung der Rasterelektronenmikroskop-Bilder, dass die beiden Schmetterlingsarten
Papilio Palinurus und Prepona Omphale zwei verschiedene Arten von Nanostrukturen
aufweisen.

Während bei der Schmetterlingsart Papilio Palinurus grubenförmige Strukturen vorhan-
den sind, sind bei der zweiten Schmetterlingsart Prepona Omphale tannenbaumartige
Strukturen vertreten. Ich erkannte, dass diese Nanostrukturen aus Rillen mit Lamel-
len bestehen. Lamellen erzeugen Dünnschicht- und Mehrschichten-Interferenz, die zur
Färbung der Flügel führen. Ich konnte dieses Phänomen jedoch nur für Schmetterlinge
mit Lamellen bestätigen. Daher ist ein detailliertes physikalisches Modell erforderlich,
um den Strukturfarben auf den Grund zu kommen.

Dies war die Inspiration, um das Verhalten des Lichts in den Nanostrukturen mithilfe
mathematischer Modellierung zu verstehen. Basierend auf Rasterelektronenmikroskop-
Bildern erstellte ich zwei einfache Modelle mit der Tannenbaumstruktur.

In einem weiteren Schritt verwendete ich die Maxwell-Gleichungen, um das elektrische
und magnetische Feld um die Modellstrukturen herum zu bestimmen. Diese Gleichungen
wurden zur Diskretisierung der ursprünglichen partiellen Differentialgleichungen mit der
Finite-Differenzen Methode gelöst. Aus dieser Rechnung stellte ich die Hypothese auf,
dass die Strukturen Variationen in elektrischen und magnetischen Feldern erzeugen, die
möglicherweise zu Interferenz führen können.

Wenn ich die Möglichkeit erhalte, dieses Thema wieder zu untersuchen und mich dar-
in noch weiter zu vertiefen, würde meine Arbeit das Studieren anspruchsvollerer Mo-
delle der Schuppenstrukturen sowie modernere Techniken zur Lösung der Maxwell-
Gleichungen umfassen. Zudem würde ich untersuchen, weshalb die obige Hypothese in
der y-Richtung des elektrischen Feldes stärker hervortritt als in der x-Richtung. Darüber
hinaus sollte 3D-Modellierung im nächsten Schritt anstelle von 2D-Modellierungen in
Betracht gezogen werden.
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5.17 Analyse des Schmetterlingsflügels Papilio Palinurus. . . . . . . . . . . . 34
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A Die Nomenklatur

Zustandsgrössen

f Frequenz

λ Wellenlänge

t Koordinatenzeit

x x-Koordinate

y y-Koordinate

z z-Koordinate

E Elektrisches Feld

B Magnetische Flussdichte

H Magnetische Feldstärke

J Dichteströmung

Parameters

h Plancksches Wirkungsquantum

ρ Elektrische Ladungsdichte

ε Permittivität (Material)

ε0 Permittivität (Vakuums)

µ Magnetische Permeabilität (Material)

µ0 Magnetische Permeabilität (Vakuums)

c Lichtgeschwindigkeit (Vakuums)

Mathematischer Operator

∇ Gradienten

∇· Divergenz

∇× Rotation
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